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Abstract. Recent advances in the model checking of recursion schemes h
opened the prospect of a model checking approach to thecatidin of higher-
order functional programs. We formulate the Resource USagécation Prob-
lem in a general (liveness) setting, where good behaviowspecified by al-
ternating parity (word) automata; and we give a sound andptete decision
procedure by reduction to the problem of model checkiiginer-order recursion
scheme$HORS) against alternating parity tree automata. Exteplivbayashi's
type-inference approach, we present an efficient algorftrrdeciding a restric-
tion of the model checking problem in which properties arpregsed bwlter-
nating weak tree automatg@nd hence all CTL formulas). We have constructed
a model checker, HORS, that implements our algorithm and a humber of opti-
misations. Despite the hugely challenging worst-case tioraplexity, THORS
performs remarkably well on small examples, even up to dsd@o our knowl-
edge, this is the first model checker for HORS which allowslfierspecification
of tree automata with a non-trivial acceptance conditinaluding all CTL prop-
erties.

1 Introduction

In the past decade, huge strides have been made in the dexiopf finite-state and
pushdown model checking for the verification of computergpams. Though highly
effective when applied to first-order imperative programstsas C, these techniques
are much less useful for higher-order functional progrdmsontrast, the two standard
approaches to the verification of higher-order programsyge-based program analy-
sison the one hand, artieorem-provingnddependent typesn the other. The former
is sound, but often imprecise; the latter typically regsiineman intervention.

In a POPL'09 paper [1], Kobayashi introduced a novel appndacthe verifica-
tion of higher-order functional programs by reduction to @ad®l checking problem for
higher-order recursion schemes. A form of simply-typedhddmcalculus with recur-
sion and (uninterpreted) first-order symbdigjher-order recursion schem¢dORS)
are generators of infinite trees. Building on recent advairche model checking prob-
lem for HORS [2], Kobayashi developed a type-based algaritvhich is sound and
complete for model checking HORS against trivial automiaéa Biichi tree automata
with a trivial acceptance condition). This method has beemassfully applied to the
resource safety verification problem [3] for RUL, a simpjp¢d functional language
with dynamic resource creation and access primitives. laee transforms which,
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given a functional programM and a correctness propetty(e.g. an open file is even-
tually closed, and not read from or written to after it is @d¥ reduce the verification
problem to one of deciding whether a trivial automatép accepts the tree generated
by a recursion schem@,,.

In this paper, we formulate the verification problemegource usage in accord with
©, Wherey is a specification of good resource-usage behaviour repessas an alter-
nating parity automaton (equivalently a linear-time madal-calculus formula). We
show that the problem can be reduced to the problem of moéekatng HORS against
alternating parity tree automata. We illustrate the apgiagsing liveness specifications
for resource usage and discuss appropriate fairness assusp

After formulating the general problem and its solution, wentour attention to
a particular restriction which we believe will be relevaatgractice. We develop an
efficient algorithm for model checking HORS agaiafiernating weak tree automata
(AWT), which are an automata-theoretic characterisatidh®alternation-free modal
mu-calculustAFMC). AFMC maintains a delicate balance between expvéagsand
algorithmics: it embeds all of CTL whilst remaining amerealbb efficient methods
(AFMC can be evaluated in time linear in the structure) [4, 5]

Givenan AWTA and a HORS?, we consider thacceptance problewf whetherA
accepts the tree defined by denoted G]. By adapting Kobayashi and Ong’s result [6],
given an AWT.A, we construct an intersection type systa;i"n such that4d acceptdG]
if, and only if, Eloise has a winning strategy in a deriwedakBuchi gameG (G, XA“).
Intuitively Eloise aims to prove that the HORS is well-typed inX/ﬁ‘, and Abelard
aims to disprove it. We present a semi-algorithm that is gni@ed to terminate in the
case of a YES instance, and show how it can be used to form aiakegrocedure.
We also discuss specialisations of the algorithm for lepsessive automata, including
deterministic AWT and automata with trivial and co-trivealceptance conditions.

Because of the inherent complexity of the model checkindplera (Theorem 5),
building and interrogating a representation of the gameat@would be a hopeless
task. Fortunately, to determine a solution, we need onlsictan the reachable part of
the underlying graph, which corresponds to those typesdisdribe the computation
of run-trees of4 over[G]. The algorithm consists of a two stage loop. In the first stage
the recursion schem@ is partially evaluated in order to extract those compuresily
relevant type bindings. If there is no run-tree&fover [G], then stage 1 will fail and
the algorithm concludes thf?] is not accepted byl. In the second stageveeakBuchi
game is built from the bindings collected in the firstEibise has a winning strategy
in this game then the algorithm concludes that there is aemitg run-tree ofd over
[G]. We present a linear-time algorithm for solving such games.

We have implemented the algorithm in a prototype tool, dalleiors (Types for
Higher-Order Recursion Schemes). We have evaluated thenc® number of exam-
ples, some derived from programs, others from the liteeafline experiments we have
performed show that the model checker is remarkably faspiteethen-EXPTIME
complete worst-case time-complexity.

Related work.Kobayashi and Ong [6] have shown that, given an alternatimijyptree
automaton4, there is a type theory4 that characterises it, in the sense that thefitge
generated by an arbitrary HORSis accepted byl if, and only if, Eloise has a winning
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strategy in a certain type-inference parity game. Theiultgzovides the theoretical
basis of our algorithm. On the implementation side, theymsar of our work is TReCS,
Kobayashi's tool [7] that checks if a given deterministigiil automaton accepts the
tree generated by a HORS. Stage 1 of our algorithm builds dreatends Kobayashi's
method of extracting computationally relevant type bimgifrom configuration graphs,
which are representations of runs of the automaton on pavaduation of the HORS. In
[8] a new algorithm for trivial automata model checking of R®is given, which runs
in time linear in the size of the HORS, assuming that the aatarand the largest order
and arity of functions are fixed. To our knowledgejdrsis the first implementation
of non-trivial automata (more generally, AWT / CTL) model checking of HORS.

Outline. The basic notions such as HORS, AWT and the associated [garites are

defined in Section 2. Section 3 introduces the resourceds@werification problem.

Section 4 introduces the intersection type system thabchenises AWT, the two-stage
model checking algorithms, and presents relevant comglessults. In Section 5, we
briefly discuss correctness, complexity and optimisatemhhiques. The implementa-
tion and experimental results are presented in Section 6.

2 Technical preliminaries

Higher-order recursion schemes Kindst are expressions defined by the grammar
A = o| A — B.We define therder of a kind: ord(0) := 0 andord(A — B) :=
max(ord(A) + 1, ord(B)). Assume a countably infinite séfur of kinded variables.

A higher-order recursion schenig a tupleG = (X', N, R, S) where (i) X is aranked
alphabet.e. eachterminal f € X has an arityar(f) > 0; (i) A is a set of kindedon-
terminals S € N is a distinguishedtart symbobf kind o; and (iii) R is a finite set of
rewrite rules of the forn¥ z; --- z,, — e, whereF : A; — --- — A,, — o and each

x; : A; € Var, ande : o is an applicative term generated fratdlU N U {z1, -,z };

we defineéR(F) := Az - - - x,,.e. Theorder of a recursion scheme is the highest order
(of the kind) of its non-terminals. We usketerministiaecursion schemes (i.e. one rule
for each non-terminal) to define possibly-infinite trees.

Example 1 (An order-2 recursion sche@g). Take the ranked alphabg&tof symbols
a, b, c of arities2, 1,0 respectivelyand the s&f = {S : 0, F : (0 - 0) = 0,G : (0 —
0) = (0 = 0) = 0 — o} of non-terminals. Consider the order-2 recursion schéme
with rewrite rules:

S— Fb by S
Fx—a(ze)(F(Gbx)) - b/ ™,
Gryz— x(yz) |
b
Unfolding from S, we have .

S = Fb—a(be)(F(Gbb)) — abe) (a(Gbbe) (F(Gb(Gbb)))) — -

1 We use the wordind here instead of the more usugpebecause the latter is reserved for
intersection typgto be introduced in the sequel.
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thus generating the infinite term(bc) (a (b(be)) (---)). The tree generated by,
[G+], is the abstract syntax tree of the infinite term, as showrebo

Formally the rewrite relation» ¢ is defined by induction over the following rules:

Fzy-- -2, = eisaR-rule t =gt t—agt
Fty--t, =g efti/xr, - tn/zn] st —q st ts —=at's

We write — ¢, for the reflexive, transitive closure e .

Henceforth fix a ranked alphabgt setm := max{ar(f) | f € X'}. A X-labelled
treeis a partial functiort from {1,---,m}* to X such thatdom(t) is prefix-closed.
A (possibly infinite) sequence over {1, ---,m} is apathof ¢ if every finite prefix of
7 is in dom(t). Given a term¢, we define a (finite) tree* by: (F'¢; - - )T = L
and(fty---t,)" = ft1t---t,t (wheren > 0). E.g.(f (Fa)b)t = f Lb. Let
C be the least partial order oo U { L} defined byva € X.1 C a. We extend_ to
a partial order on trees by:C s iff Yw € dom(t).(w € dom(s) A t(w) C s(w)).
Eg.LC fL1LCfL1bLC fab.Foradirected sef of trees, we writg |T for the
least upper bound of elementsBiwith respect ta=. We define thdree generated by
G, or thevalue treeof G, [G] := | |{t* | S —§ t}. By construction[G] is a possibly
infinite, ranked £ U { L })-labelled tre€.

Alternating parity tree automata (APT) Given a finite sefX, the seB™ (X) of posi-
tive Boolean formulaever X is defined by the grammaB* (X) 2 0 ==t |f |z | OA
0 | 6V 6, wherex ranges overX. We say that a subséf of X satisfiest if as-
signing true to elements ifr and false to elements iX \ Y makesf true. Anal-
ternating parity tree automatofor APT for short) overX-labelled trees is a tuple
A= (XQ,9,qr,2) where (i) X is a ranked alphabet; let be the largest arity of
the terminal symbols; (i) is a finite set of states, ang € (@ is the initial state;
(i) 6 : Q x X — BT({1,---,m} x Q) is the transition function where, for each
feXandge Q,d(q,f) € BY{L,--,ar(f)} xQ); (iv) 2:Q — {0,---,m —1}
is the priority function. We say that an APT deterministigust if its transition func-
tion § is deterministic i.e. for eaclh€ Q andf € X, 6(q, f) ist or f or has the shape
/\f;(lf)(i, q;); itis conjunctivgust if § maps every pair to a disjunction-free formula.
For any pair(q, f), the RHS ofé can be thought of as a set of satisfying as-
signments (explicitly so through conversion to DNF), eathwbich are a potential
continuation of the run-tree. A satisfying assignment &ief a set of pairgi, ¢')
(e {l,---,ar(f)}, ¢ € Q) where each such pair corresponds to sending a copy of
the automaton in statg¢ to child i of the current position in the tree. In Example 2
below, we can see that; has a single satisfying assignment for each transition&nd i
therefore deterministic.
An alternating Bichi tree automatofABT), A = (X, Q, d, q1, 2), is an APT with
at most two priorities (i.ef2 : Q — {0, 1}); states with priority O (and 1) are called
acceptingandrejectingrespectively). Aralternating weak tree automat¢AWT) A is
an ABT that satisfiesveaknesshere is a partial ordes over a partition{Q1, - -, @» }

2W.l.o.g. (see e.g. [6, Remark 2.1]) we consider HOR®hose tredG] does not contain._.
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of @ such that (i) for each, either every state if); is accepting, or none is; (ii) for
everyg € Q; andq’ € Q; for which ¢’ occurs ind(g, f), for somef € X, we have
Q; < Q. It follows that every infinite path of anl-run ultimately gets trapped within
someQ);. A deterministic weak tree automat¢@WT) is an AWT that is deterministic.

A trivial automatonis an APT that has only one priority, namely, 0 (equivalently
[9,1], it is a non-deterministic Biichi automaton all of veeostates are accepting). It
follows from the definition that a tree is accepted by a ttigiztomaton just if there is a
run-tree over it (the adjective “trivial” refers to the ahse of any acceptance condition
on infinite paths of the run-tree). We define@trivial automatorto be an APT all of
whose states have priority 1. Thus a tree is accepted by avial-automaton if (and
only if) there is a run-tree that has no infinite paths.

Example 2 (A DWT4,). Take the ranked alphab&t of Example 1;]G,] is accepted
by A1 = (X, {q0.¢1},6.90.{q0 — 0,q1 = 1}) with {¢:} < {qo}, whereé is as
follows (omitting all thats maps tdf): letq € {qo, q1}

(qua) = (17(]0) A (27(10)) (Qab) = (qu)? (Qac) =t

Thus A, accepts a¥-labelled treet just if in every path, ifb occurs, therb occurs
until ¢ occurs. Note tha#d; is actually a DWT. Becausikandc¢ have arities 1 and 0
respectively, the property defined By can be described by the CTL formula& (b —
A(b U ¢)).

A run-treeof an APT A over aX'-labelled tree a,qo
tis a(dom(t) x Q)-labelled (unranked) tree (see p g, - “a,qo
right for the run-tree of4, over [G]) satisfying: . b w0 ~ ~ w

(i) € € dom(r) andr(e) = (e, qr); (ii) for every
B € dom(r) with r(3) = (a, q), there is a (possibly b, q1

empty) setS that satisfiesi(q, t(«)); and for each c, Iql

(i,q') € S, there is somg such thai3 j € dom(r)

andr(8 ) = (ai,q).

Letm = m w2 --- be an infinite path in-; for eachi > 0, let the state label of
the noder, - - - m; beg,, whereq,, = q;. We say thatr satisfies thearity condition
if the least priority that occurs infinitely often i2(q,.,) 2(qn, ) 2(gn,) - - - is even. A
run-treer is acceptingf every infinite path in it satisfies the parity condition. \&&ay
that a tree is accepteddy A just if there is an accepting run-tree.dfovert.

Ong [2] showed that there is a procedure that, given a resmussiheme> and an
APT A, decides whethed acceptdG].

Theorem 1 (Ong [2]).Let G be a recursion scheme of ordey and.4 be an APT. The
problem of checking whethet acceptq (] is n-EXPTIME-complete.

The correspondence between parity games and modal mutsal@quivalently
APT [10]) specialises to one between weak Bichi games adnation-free mu-
calculus (equivalently AWT [11]). (For parity games anceatiation-free mu-calculus,
see Appendix A.) Recall that Biichi gameis just a parity gameéVy, Vg, vg, E, £2)
that has at most two priorities, shy) and 1; priority-0 nodes are calledcepting and

% In a weak Biichi game, every path has at most one infinitetyswing priority. Hence it does
not matter whether the range ©fis {0, 1} or {1, 2}. (We choose the former.)
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priority-1 nodes are callegtjecting A Biichi gamds said to beweakif there is a par-
tial order< over a partition{14, - - -, V,, } of the node-set such that (i) for eaclreither
every node inV; is accepting, or none is; and (ii) for eath,v) € E, if u € V; and

v € V; thenV; < V,. It follows that in a weak Buchi game, every maximal play is
eventually “trapped” iri/; for somei, and it is winning (forEIo'l'se) if, and only ifV; is
accepting. (Henceforth we assume that parity games are.jinit

3 \Verifying resource usage liveness properties

We approach the verification of higher-order functionalgreons by reduction to the
model checking of HORS. Take the verification problem: dbestinctional program
P satisfy temporal specificatiop?

1. The progranP is first transformed to a recursion schefdhat generates a tree
[P] representing all possible event sequences in the compuitaftiP. The prop-
erty ¢ is also suitably transformed to a propegtyf infinite trees which may be a
tree automaton or another temporal formula.

2. The tre€]P] is then model checked against the transformed proggrsuch that

P satisfiesp if, and only fif, [[15]] satisfiesp.

This method idully automati¢c soundandcompletdor the Resource Safety Verification
Problem as studied by lgarashi and Kobayashi [12, 1].

The goal of Igarashi and Kobayashi's research in resoufegyseerification [12] is
to check statically if the manner in which a given programesses resources (which
model stateful objects such as files, memory cells and logki$fies a given safety
propertyp. Our aim here is to extendto all linear-time modal mu-calculus properties,
including both safety and liveness properties. Considemgple functional program
that opens a filéoo, reads it repeatedly until the end-of-file character is raad then
closes it. An abstraction of such a program is presented Mlafike syntax as follows.

let rec g x =if b then close(x)
el se read(x) ; g(x) in
let s = open_in "foo" in g(s)

Does the program access the fileo in accord with a correctness specificatiorr
“An opened file is eventually closed, after which it is notd&aThe propertyy may
be described as a regular expression (g@.) or an automaton. Are such verification
questions decidable?

Igarashi and Kobayashi formalised the problem for a sintpped call-by-value
lambda-calculus with recursion and primitives for dynaaiflic creating and allocat-
ing resources. Following [1], we consider a call-by-namesiam (for consistency with
HORS) which we call RUL.

Resource usage language, RULWe first fix a finite sety; of resource sorts and a
setL of resource access primitives. A Rirogram D is a set of function definitions
{FAT1 =e1,--,F, T, = e,}, where eaclF; is a defined function symbol, and is
an expression which is defined by the grammar

e n= x|xz| Flejes]|ifrxeres| newle|acg ze
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whereq anda range over); and L respectively. The program contains exactly one
function definition of the formS = e, whereS, a distinguished defined function sym-
bol, is the “main” function; by conventioh; = S.

We consider only well-typed programs. The set of types isndefby the grammar
7 == R |unit | m — 7, whereR is the type of resources anuiit is the type of the
unit valuex. A type environment[", is a finite map from variables (including function
namesk;) to types. Valid type judgemenfS + e : 7 are defined by induction over the
following set of rules.

i I'kep: TFe:
' :unit z:7kFx:7 €1:T1 = T2 e1: T

I'Fejey: T
I'Fep:unit I'k ey :unit I'Fe:R—unit I'kFe:R I'key:unit
I'Fifxe; eq : unit I' F new! e : unit I' - acg, eq es : unit
A programD is well-typed undet” just if I',Z; : 7; F e; : unit is valid for each,
wherel" = {Fy : T1 — unit,---,F, : T, — unit}, T; : 7; abbreviates the set
{Zi1 : 71, Tir, * Tir, b, @NAT; — UNIt Meanse;; — - -+ — ;- — UNIt.

Example 3 (RUL progranb). The following program is obtained from the preceding
ML program by lambda-lifting followed by a standard CPS sfammation.

b S = newreadonly (7 )
. Gka =ifx (aCGQiose = k) (ACGead = (G k )

Operational semanticsThe small-step semantics of RUL is given by a binary relation
— between pairs of the forfi?, e) whereR is a set of resource names that have been
created thus far in the computation (which is not garbadieated). We define» by a

set of rewrite rules as follows. Note that is non-deterministic.

(R, Fe) — (R, €'[e/y]) if Fy=e¢'isaD-equation
(R, ifxeres) = (R, e;) i=1,2
(R,newle) — (RU{z},ex) ifzgR
(RU{z}, acgze) — (RU{z}, e)

Example 4.A reduction sequence db;, and its tree of access sequence (definition to
follow).

ro

(@, S) by'
N (Q, nevvreadonly (G *)> P Tif -
= ({z}, G x x) ¢ r
— ({z}, if* (8CGlose T *) (ACGead T (G * T))) * bris
— ({#}, aCGeaa 7 (G * 7)) ¢ Orx
= ({z}, G x x) l '

Reasoning about resource usage is difficult because a pnofranay create in-
finitely many resources. To verify thd? uses resources correctly, we need to do so
resource-wiseé.e. check thatD useseverycopy of everysort of resource (that has been
created) in accord with the desired property.
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Example 5 (ProgranD-). D, creates infinitely many copies of “readonly” resource.

D, S = nev\feadonly (G *)
2 Gkx = if* (aCGose = (NEWSIMY (G %)) (8CGeaq = (G k T))

It is possible to describe the correctness property eithartamporal logic formula
or an automaton. Here we choose the latterpakity resource automatofl” is an
alternating parity (word) automatdn, L, 6, Qr, 2), whereQ is a set of state); C
Q is a set of initial states (we deliberately conflate initiedtss withresource sorts
introduced earlier)L is a set of resource access primitivés, @ x L — 22% is a
transitiorf function,qy € Q7 is an initial state, and2 : Q — {0,---,p} is a priority
function.

Definition 1. Fix a parity resource automatd®i = (Q, L, 4§, Qr, §2). Letz be a re-
source. Aconfiguration of resource: (or simply x-configuration) is a pair, written
(H, e),, wheree is an expression anl = {z1 : q1,- -,y : ¢} is a finite function
that maps a resourag to its statey; € {q.» }UQ, with ¢,,, meaning that the monitoring
of resourcer has not yet begun. The binary reIatieﬁ»D,W,w over z-configurations,
whered € {1,2, e} UQ is defined by induction over the following rules. We shall omi

the subscripts fromd—>D,W,w whenever they can readily be determined from the con-
text. Letz = x4, be a resource of sogy € @QQ;. We defin€eT,, the transition graph of
x-configurations, as follows.

(H, Fe), — (H, €[e/7)).  whereF7y = ¢’ is aD-equation

(H, ifx ey es)p — (H, €i)s i=1,2

(H, new® ¢),, 2, — (HU{z:q}, ex), x & dom(H)

(H, new’ e), (HU {v:a}ey)e  y¢&dom(H)

(HU{z: g}, new ), — (HU{z:qy: ¢} ey)e  y ¢ dom(H)
(HU{z:q}, acq ze), <, — (HU{z:q'}, e)x if ¢ € X € 6(¢q,a), someX
(HU{y: g}, acqye)s — (HU{y:q}, e)a

(H, %) — (H, %)z

In the fourth clause above,may or may not bey; in the penultimate clause, the
state ofy is unchanged. Thetateof (H, e), is defined astate(H, e), := H(z) if
x € dom(H), andg,,, otherwise. Note that if a configuration can de-ransition, its
state is preserved by the transition, which is the uniquesttian from the configuration.

A parity gamej (D, W). Let D be a RUL program antd’ a parity resource automaton.
We construct a (parity) gan® D, W) betweerEloise (Verifier) and Abelard (Refuter)
as follows.

- The initial position is the configuration sgtes, S).,, -, (&, S)., }, where each;
is a resource of sott; with Q; = {q1,- -+, qn}

4 The RHS of the transition function can be presented equitigl@s a positive Boolean for-
mula. Thus, assuming(q, a) = {51, -, Si}, we can writed(q, a) asV/; A ¢, (1, 9)-
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- If the current position is a configuration s8{ then Abelard is to move. He does so
by choosing some configuratiere C to be the new position.

- If the current position is a configuratidif, e)., thenEloise is to move. There are
two cases. Ik = acg, z ¢’ andstate(H, e), = q € Q, thenEloise chooses some
T € 6(q,a), and the new position is the setH U{x : ¢'}, €/)s | ¢ € T}. In all

other cases, the new position{is| (H, e), < c}.

Winning conditionIf a player is unable to move at any position, then the otlhayey
wins. Suppose an infinite playy co C; - - - ensues, wher€; ranges over configuration-
sets, and:; over configurations. Lettate(c;) = ¢;; if the least priority that occurs
infinitely often in the sequenc®(qo) 2(q1) 2(¢2) - - is even, therEloise wins; oth-
erwise Abelard wins. (We extend the priority m&pby mappingq..., to the largest
priority.) We say thaiD satisfiesV’ just if Eloise wins the gamé(D, W).

Note that (i) if a play reaches a configuration of the sh@peJ {z : ¢}, acg, ze),
whered(q,a) = @ thenEloise loses as she is stuck; (ii) if a play reachis +), with
stateg thenEloise wins iff2(q) is even.

Example 6.ConsiderWy := ({g¢r0,4c}, {r,c},d, {@o}, {(@ro, ), (gc,0)}) with § :
(Gro,T) = {{@ro}}, (gro,c) — {{gc}}. ThenD; satisfies the resource (safety) au-
tomatoni¥y, but not the (liveness) automatd¥i; because of the infinite path that al-
ways takes the right branch ibk. This path may be disregarded under suitable fairness
assumptions, on which more anon.

Transformation to recursion schemeBollowing [1], we reduce the resource usage
verification problem to the APT model checking problem for Ri®

Definition 2. Given a pair(D, W) as before, we constructa HORS, = (¥, N, R)
and an APTAp w such thatD satisfiesiV if and only if [Gp] is accepted bydp w .
We defineGp := (¥, N, R) where
Y:={a:1|a€ L}U{brit:2,brnew : 2,x:0tU{v?:1|qge€Qs}
N = {F:(I(F))*| F € dom(I} U {new! : (((0 —0) —-0—0) —0)—=o0 |qcQr}
U {acc | ((0 »0) »0—0) —0—0|a€L}
U {ifx:o>0—0,I:(0—>0)—0—0,K:(0—0)—0— o0}

with I" witnessing the well-typedness 6f, and’R consisting of the following rules:

ifxzy — brifxy FZ — e foreachD-equationf'z = e
ITxk —ak new! k — bryew (V2 (k1)) (kK) foreachg € Q;
Kzk—=k acq,zk — zak foreachacL

where(—)* is a translation of types of RUL to kinds defined by

Rf=(0—0)—>0—o0 unit® = o (=) =1 -7

We define APTAp w = (X, Q', ¢, qun, £2') whereX is as beforeQ)’ = Q U {qun}.
2" mapsgy, t0 0, and?’ | Q := £2; andd’ is defined as follows:

(q,brie) = (1,9) A (2,9) (¢, bruew) = (1,9) A (2,9)
' (1,¢") if ¢ = qun t if 2'(q) is even
(g,v") = t otherwise (g, %) = f otherwise

(g,a) — \/1§z‘§k /\q/eQi(laq/) if ¢ € @andd(q,a) ={Q1, -+, Qx}
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Theorem 2 (Reduction).Let D be a RUL program andll” a parity resource automa-
ton. ThenD satisfiedV if and only if[Gp] is accepted by the APAp v .

See Appendix B for a proof. We develop a non-standard notiaveak bisimula-
tion between labelled transition systems (as game graghd)prove (Theorem 7) that
Eloise winning strategies of the parity game over one gogiarmine théloise win-
ning strategies of the parity game over the other graph. fe#meQ@ is then a corollary.

Liveness and fairness Liveness properties (under certain conditions, some “good
configurations are eventually reachable) are harder tokdian safety properties (un-
der certain conditions, no “bad” configuration is ever redif). In practice, however,
liveness is as important as safdegirness(one version says: under certain conditions,
some events must occur infinitely often) is a property oftesoaiated with liveness
checking. Itis known that liveness of a system can be redigcggtmination of a mod-
ified system with fairness assumptions. Another use of éaisris as aassumptiorof

a liveness property. For example in the dining philosophmeblem, a path that ig-
nores a philosopher’s request indefinitely is unfair, argit violate a desired liveness
property. When constructing abstract models of programgitionals are often trans-
formed to non-deterministic branches; a common fairnessmgtion is to deem an
(infinite) pathunfair if it always takes the left branch, or always takes the righhich.

Example 7 (Running exampl€'p, and CWTA). See E.g. 5 (foDs) and Def. 2.

The tregGp,] is shown on the right. The brnew

box[ represents possible access sequences o <N 0

obtained by keeping track of different oc- ) .

currences of the resource. We say an ac- Tif

cess sequenceusifair if, from some point ¢ - B r

onwards, itonly takes the right branch of BT now bris

bris (intuitively because it corresponds to o - ~ 0 c N r

reading an infinite “readonly” resource). | |

Sety, to be the CTL formula brie braew b
/ N e N RN

r pre O c r

AG(r= A((x Vbri)Uc)).

When restricted téair® paths,[Gp, ] satisfiesp,. We encodep, together with the fair-
ness assumption in tlwdnjunctiveweak tree automaton (CWT, with the following
transition function.

qo, brnew — (17 QO) A (27 QO)

q07V10 — (1,(]7') A (qu) qr, brif = (qu) A (27%‘) q, T — (17 ql)

qo, bris — (lvqo) A (2,(]0) qr,T — (17 qT) qi, brie — (17ql) A (27ql)
go,r — (1,q0) gr,c >t q,cr—t

go,c — (1,qo) Gr, x> t qr,*+—t

qo,*x — t

® Fairness assumptions can take various (not necessarilatgnt) forms. Alternatively we can
say that a path ifair if it satisfies thecompassion constraifi(z, c¢)} in the sense of Pnueli
[13] i.e. if r occurs infinitely often, so does
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The statey,. (respectivelyy;) signals a node reachable by a path that, from some point
onwardspnlytakes (respectively, doestonly take) the right branch dfr;;. Weakness

is given by{qo, ¢} (accepting}> {¢;} (rejecting).

Example 8.Using the same terminals as the preceding example, conbel&TL for-
mulags := AG (v = EX(EX c)). Intuitively ¢35 says that the input program pro-
cesses empty files (“readonly” resource) correctly. iy, | satisfiesps. We can en-
codeyps in the following non-conjunctive AWTA3 with a trivial acceptance condition.

qm, brnew — (17 Qm) A (27 Qm) qm, v = (17 qm) A (17 qo) qm,T (17 Qm)
qm,C*—> (17qm) q’m7brif = (17qm)/\(27q’m) q’m7*'_>t
qo, brie = (1,q1) V (2, q1) qucmrt

4 AWT model-checking by type inference

An intersection type system for ANT Fix an AWT A = (X, Q, 4, g1, £2). We con-
struct an intersection type syste’rﬁ‘ parameterised byl and introduce a game-playing
notion oftypabilityfor recursion schemes. The type system characterisestihmaton
A in that a recursion schentg is typable in)\“A4 if, and only if, [G] is accepted by.
Letq € Q. We define

Types 6 == q | 70
Conjunctive Types 7 == A{61,---,0} (k>0)

Each type can be written uniquely &és= r, — --- — 7, — ¢ for somen > 0; we call
q thestateof 9, written state(9). We write/\f:1 0; for A{01,---,0,}, andT for A\ @.

Given a priority maf? : Q — Non@, we extend itto all types b2(r — ) := £2(0).

We introduce a notion ofvell-kindednessf type. We define the relations::.; A and
0 :: A, which should be readris a conjunctive type of kindl” and “6 is a type of kind
A” respectively, by induction over the following rules:

Tuax A 0B 6;:: A foreachi e {1,--- k}
gi::o T—0: A—B /\k 0; er A

i=1

Note that there are only finitely many well-kinded types aftekind.

Intuitively, a term\x.s of type(q1 Ag2) — ¢ is a function that takes a tree-argument
t which can be accepted from the stagesandgs, and returns a tregt/z] which can
be accepted from state By abuse of notation, we writg¢ < ¢’ to meang € @; and
¢ € Q;andQ; < @Q;. An AWT processing the tregt/x] will read the root with state
q before reading the respective roots of subtrees with statesd g, respectively. It
follows thatgq; < ¢ andg, < ¢. This motivates a notion afonsistencyf type which
is defined as follows. Each € Q@ is consistent/\f:1 0; — 0 is consistenjust if § is
consistent, and for eachd; is consistent, andtate(6;) < state(). We say that a type
0 is well-formedif (i) 0 iswell-kindedi.e.#:: A for some kindA, and (ii)é is consistent.

A type judgementf the system)(A4 has the forml" I ¢ : 6, wheret is aA-term (we
treat non-terminals as variables), afidcalled atype environmenis a set of bindings
of the formx : 6. Note that/” may contain multiple bindings of the same variable. We
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0 is well-formed

VAR
z:0Fx:0 ( )

{(i,qi;) | 1 <i<n,1<j <k} satisfiess(q, f)
g}_f:/\;cilqu %"’%/\521‘170 -4

(TERM)

LobFs: A\ 0, -0
Ii+t:6;foreachi € {1, k}
IhUhU---Ulykst:0

(APP)

F,x:/\ieIQiFt:O I1CJ
forj € J\ I, state(0;) < state(), andd; is well-formed
I'E Xzt /\jGJ 9]' — 0

(ABS)

Fig. 1. Rules defining valid judgements af'.

write I, - /\f:1 0; as a shorthand faF U {« : 0y,---, 2 : 6} wherek > 0 andz is
assumeahotto occurinl". (ThusA = I',z : A\ @ means thatA contains no bindings
of z.) Valid type judgements olﬁ;ﬁl are defined by induction over the rules in Figure 4.

Remark 1.(i) (ABS) is the only place where weakening may be introduced. (ig Th
rule (APP) is not multiplicative: it is possible that; N I; # @. Thus there is implicit
contraction in the type system.

Lemma 1. For every valid type judgemeit |- s : 0, (i) 0 is well-formed, and (ii) for
each bindinge : ¢’ in I, 6’ is well-formed, anditate(6') < state(0).

Typing a recursion scheme kv, Following Kobayashi and Ong [6], we derive a weak
Biichi game from the type systeyl. Let G = (X, NV, R, S) be a recursion scheme.
We say that a binding’ : 6 is G-consistentf F € N and for some kind4, F : A and

0 :: A. Atype environmeni” is G-consistentf every binding in it isG-consistent.

Definition 3. (i) Givenan AWTA = (X, Q, 9, q1, £2) with a partial ordex over
a partition{Q1, - - -, @, } of @, and a recursion schente¢ = (X, ', R, S}, we define
the associated (weak Biichi) gafiéG, A%) = (Va, Vi, (S : q1), E, ') where

Ve :={(F:0)| (F:0)is G-consistent

Va={(T,q) | I(F:0).T-R(F):0 N q= state(0)}

E = {((F:0), (I state(0))) | I'= R(F) : 0} U{((I',q), (F: 0)) | (F: 0) € I'}
(S : qr) € Vg is the initial node, and the priority functio®’ maps(F : 0) to
2(state(d)), and(I", q) to £2(¢). The underlying directed graph has nodei§etJ Vg

and edge-selt. )
(i) We say thatz iswell-typedin XA“ if Eloise has a winning strategy@(G, XA“).

Lemma 2. The construction in Definition 3(i) yields a weakdhi game.

Remark 2.The second componentof an A-node(7, ¢) is introduced so that the re-
sultant edge relation is monotone w.kt.
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The gameG (G, A/(‘) may be understood intuitively as follows. The game begins by
Abelard challengind=loise to proveS : ¢; i.e. S has typeg;. As the opening move,
Eloise produces an environmefit (precisely, a mové I, q), for someq) such that
I' = R(S) : q;. Abelard responds by choosing a binding frdm say, F' : 6, and
challengesEIoTse to proveF' : 6. Eloise then responds with an environméhitsuch
thatI” - R(F) : 6. The play either alternates betwegloise and Abelard indefinitely,
or ends when one of the players is unable to mé&veise wins a play if at some point,
it produces the empty type environment as a move (so thata#théd unable to pick
a binding), or if the play is infinite, and 0 is an infinitely@aring priority (i.e. it is
trapped in an accepting@;). See Appendix C for a linear-time algorithm for solving
weak Buchi games.

By adapting the proof of the main result of Kobayashi and G8]gWe obtain the
following characterisation.

Theorem 3. Given a recursion schentg and an AWTA, [G] is accepted by if, and
only if, G is well-typed in\7 (i.e. Eloise has a winning strategy ifi(G, A7)).

The algorithms = 4 and Z 4 Fix an instance of the model checking problem: a re-
cursion schemé& and an AWT.A. Based on Theorem 3, we present a type-inference
approach to decide whethet acceptsG]. Our task is to construct, and then solve,
the weak Biichi gamé& (G, A%). Building the underlying game graph naively (e.g. by
constructing the edge-set explicitly) would be prohilgtivexpensive. The number of
Eloise-nodes in tandem with types is subject towaall tower-of-exponential growth,
wheren is the order of the recursion scheme. Our solution stems fremobserva-
tion that to solve a given gami@(G, A), we need only consider a small, reachable
part (from the start node) of the underlying game graph, mgraecertain subgraph
restricted to nodes that describe the computation detedrdy the problem instance
(G, A).

We present a semi-algorith&4 (part of the decision procedu@A), which returns
“YES” if A acceptdG]. =4 comprises two stages:

- Stage 1Build a representation of all run-trees df over [G]; if there is none, we
conclude thafG] is not accepted byl. Stage 1 is in turn organised into three sub-
stages, which are similar in outline to Kobayashi's aldorit[7]; we point out the
differences in the following.

- Stage 2Derive a game, which will be considerably smaller tii@, %), in which
Eloise can play only those strategies that corresponetisdefinedun-trees, so that
Eloise has a winning strategy in this game if, and only ife @f these run-trees is
accepting.

A pseudocode presentation of algorittim is given in Figure 2.

Write A as the complement automatondf.e. L(A) = L(A). We define 4 as the
algorithm that, given inputr, dovetails the computation & 4(G) and=—(G), return-
ing the outcome of the former, but tihegationof the outcome of the latter, whichever
terminates first. In the following we explain the variouges of= 4.
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Initialisation C := initial configuration graph
Stage1.1% Expand configuration graphC

count := 0;

while (count < MAX & C has open node)

do N := an open node;
try { C := expand(C, N)} catch(NO_RUNTREE){ returnNO };

Stage1.2% Extract environmentl” from C

I' := ElimTE(I¢);
Stage 1.3% ComputeF,. -fixpoint from I

while I' # Fow(I') do I := Fuw(I');

if S:qr ¢ I' then gotoStagel.1l
Stage 2% Solve weak Bilichi gam& ™ (I)

if Eloise has a winning strategy @ (1) then returnYES else gotdStage 1.1

Fig. 2. The Semi-Algorithm= 4

Stage 1.1: Expansion of the configuration graphThe key insight behind Kobayashi's
algorithm is that the desired type environment may be obthby repeating a fixpoint
computation, using progressively larger seed values,fatoch aresmall because
they contain only (over-approximations of) bindings relewto the problem instance
(G, A). These bindings (of non-terminals) are extracted froonfiguration graphs
which are a representation of an appropriate superposifitive uniqué run-tree ofA
on a finite (and in general partial) evaluation trace of tleeirsion schemé;.

We generalise Kobayashi’s configuration graph [7] to thérgebf alternating au-
tomataA. Formally a configuration graph is a directed graph, whoskesare labelled
by triples of the form(¢, ¢, g) wheret is a ground-kind applicative term generated from
the terminals and non-terminalgjs a state of the automaton and the flamndicates
whether the node ispenor closed Edges of a graph are labelled by either O or pairs
of numbers. The initial configuration graph is a singletoapdr whose node, theot
node is labelled by(:S, g1, open).

Procedure ezpand(C, N). SupposeV is an open node, with labgt, ¢, open), of a
configuration graplt. The procedurezpand(C, N') constructs thexpansiorof C at
N, which is the graph obtained frofhby replacing the flag oV by closed, and adding
nodes and edges as follows.

(1) Caset = ft;y---tn,. Suppose the set of minimal sets satisfydiid, ¢) is

H{U. ) | 1<j<m1<k<r}[1<i<l}

wherel > 0. We assume that each node whose label contains a term headed by a
terminal symbol — we call such a noterminal-headed- has a countety.c, which is
initialized tol. If 6(f, q) is false (i.el = 0), then dobackPropagate (N ); otherwise, for
eachl <i<!,1<j<mandl <k <rj,letN’be the node labelled b@j,q;ik,g’>

(we add such a node ®if it does not exist); add an edge froii to N’ labelled by

® becaused is assumed to be deterministic in [7]



Model Checking Liveness Properties of Higher-Order Fumzti Programs 15

(i, 7), wherei indicates the non-deterministic choice, gm@fers to thej-th argument
of the terminalf.

(2) Caset = Fty---t, andR(F) = A\Z.s. Let N’ be the node that is labelled by
(s[t/7Z],q,9’) (we add such a node if it does not exist). Add a 0-labelled edge from
NtoN'.

Procedure backPropagate(N)

if there is a pathfrom the root tolV that does not meet a terminal-headed node
then throwNO_RUNTREE

for eachi’ and each terminal-headed nalié that connects tdV via a path
whose trace matchés’, —) 0* do

{ N.c:=N.c-1;
for eachj and (i, j)-successoN” of N’ dodelete(i’, j)-edge fromN’ to N";
if N'.c = 0thenbackPropagate(N') }

A configuration graph is said to lmbosedif all its nodes are (flagged as) closed.

Stage 1.2: Extraction of type environmentl'z For each nodéV with label(t, q, g),
and for each prefix of ¢, we define a set,,  of types by induction on the kind aof
as follows.

(1) Caseu has kindo. Thent = u; setr, n := {q}.

(2) Case u has kindA — B. Thent = wv v, wherev andu v have kindsA
and B respectively. Le{ Ny, ---, N, } be the set of nodes that are reachable fildm
in C, and have labels of the forfvw, ¢’, ¢’) wherev “originates” from the copy of
vin N.LetSy,---,5 C {Ny,---,N,} be the maximallicompatiblesubsets, in the
sense that two node$; and N;/, reachable froniV by paths (see footnote #)and~n’
respectively, areompatibldust if whenever there exists, such thatr (i, j) < 7 and
m1 (', 7") < «’ theni = ¢’. l.e. eachS; consists of nodes reachable fravnfollowing
compatibleélo'l'se choices. Then,, y consists of type8 defined as follows: for each
1 <i<lwhereS; = {Ny,---, Ny }, foreachW;; € 7, n,, andd’ € T, N,

0 = N\{0i,--0i, 0} >0

whereq is a fresh type variable, if. occurs in an open node (including) reachable
from N via a path compatible witl;; otherwise sef to A{6;1,---,0;.,} — ¢'. Given
a configuration grap8i, we define its type environment as

It :={(F:7)|someC-nodeN haslabekFt; - -t,,q,9),7 € Tr N}

Type variables are subsequently eliminated using KobagaShm TE [7]. Even though
a closed configuration graghmay be infinite [ is necessarily finite.

Example 9.Recall Example 7. After expanding 26 nodes, our implementatHORS
computes d ¢ containing the following bindings for the non-termir

T—=(T—=q9—=q)—=>q T—((g —q)—q —q9)—q0
T‘>((THQI)HTHQI)/\((QTHQT)HQT%QT)HQT

" A path (in a configuration graph) is a sequence that matches thelaregupression
(node) ({edge_label) (node))*; its traceis the subsequence of edge labels.
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Stage 1.3: Computation ofF,,-fixpoint from seed I' Henceforth letl” and A range
overG-consistent type environments. We define a monotone fumotictype environ-
ments

Faw([):={(F:0)e'|3ACT.AFR(F): 6}

(The subscript ofF,,,, emphasises the “non-weakening” nature of the sysmé‘m The
following is a straightforward consequence of the Kna3aski Fixpoint Theorem.

Lemma 3. Let I" be aG-consistent type environment. Writif . (I") to mean the
i-fold application of 7y, t0 I, Frw (- - - (Fuw(I7))), we have a descending sequence
Fo():=TDF}

nw

(1) 2 Fau(I) 2+ 2 Fo (1) 2 FZHI) 2+

nw

There exists am > 0 such thatF?, (I") = F(I); let x be the least such. Then
Frh (I)—written Fiz r (Fuyw )—is the largest fixpoint oF,,,, contained inl" i.e. Fiz r (Fnw)
is the largestl™” such thatl” C I', and for every(F : 0) € I there existsA C I
such thatd - R(F) : 6.

Example 10.Recall again Example 7.HORS computes” = Fiz r, (Fnw) With bind-
ings of G exactly as in Example 9. Furthermore, the fixpoint conteins ¢o, SO it
witnesses the existence of a run treedafover[Gp,].

Stage 2: Construction and solution of the gameG—(I") The weak Bichi game
G~ (I') = (Va, Vg, E, vy, £2') is constructed using the fixpoitit obtained from Stage
1.3 and an auxiliary functiof’Env -, whose domain of definition ig’, which maps
F:0t0{A CTI| AF R(F):0}. Recall Definition 3. As shown in Lemma 2,
the gameG~(I") will inherit the weakness of the specification automatontsd the
nodes of the game graph may be partitioned according to arloreler. The game may
be solved in linear time by proceeding up the ordering. Witksch partitiori/;, each
terminal nodev is markedt or f according to whether € V4 or V. The effect of this
is then propagated such that any predecesguat is now fully determinetiare marked
and propagated in turn. After this stage, remaining nodesrarked according to the
acceptance condition &f, and the effect propagated as before. Processifgisfnow
complete Eloise has a winning strategy from just if v, is markedt after processing
of all V;. See Appendix C for a presentation of the linear-time atbori

Remark 3. (i) In caseA is conjunctive Stage 2 of= 4 may be modified such that
the “else gotoStage1.1” branch is replaced byréturn NO” (this indicating that the
single possible run-tree is not accepting). Furthermaeerttodified version is guaran-
teed to terminate [7] without running 4 and==; in parallel.

(i) In caseA is a co-trivial automator|G] is accepted by if, and only if, Eloise
has a strategy that forces every play to be finite, becauseptstruction, every node
of the game graph is rejecting.

(iii) In case A is a trivial automaton, every node of the corresponding viashi
gameG~(I) is accepting. Thus Stage 2 is redundant; it can be replacéuebsingle
command feturn YES”.

8 v € Vi (resp.Va) with anychild t (resp.f) or all childrenf (resp.t)
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5 Correctness, complexity and optimisations

Correctness Fix an AWT A and a HORS=. We show the following in Appendix D:
Theorem 4 (Correctness).

() If AacceptgG], then= 4 terminates on input and returns YES.
(i) If Arejects[G], then if= 4 terminates on inpu& then it returns NO.

HenceZ= 4 is a procedure for deciding ift acceptyG]J.

Example 11.Recall once more Example 7. The game graph for the resultamgeg
G~ (I'), as computed by AORS, is shown in Figure 3Eloise nodes are drawn as dia-
monds and Abelard nodes as squares. Environments and typemited for brevity.
There are two partitions: an accepting partition, wherdygles end in state, or ¢,
and a rejecting partition, where all types end in stateStarting fromsS, the play is
either infinite within the accepting partition, or finite aadds with Abelard unable to
play from the empty environment. In either cakgise wins.

Fig. 3. The gameG ™ (I") resulting from Example 7.

Theorem 5 (Complexity).Let G be an orderr recursion scheme, and be an APT.
We consider the problem of whetHg?] is accepted by.

(i) In caseA is alternating weak, or alternating trivial, or alternatinco-trivial, the
problem isn-EXPTIME complete.

(i) In case A is deterministic weak, or deterministic trivial, or detanistic co-
trivial, the problem is(n — 1)-EXPTIME decidable; it is als¢n — 1)-EXPTIME
hard in the first two cases.

The cases of AWT and DWT are due to Kobayashi and Ong [14] arzh¥@shi [7]
respectively. See Appendix E for a proof of the Theorem.

Remark 4.The decision problemIRITE (Is the tree generated by a given ordere-
cursion scheme finite?) is itm — 1)-EXPTIME, and is conjectured to b@g — 1)-
EXPTIME hard [14]. It follows from Konig's Lemma thatiRITE reduces to the deter-
ministic co-trivial case of the acceptance problem of Tkeob.
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Optimisation MemoryTime forT|Game NodeJime SolvingTotal Time
None >4GB — — — —
Canonisation 2.3GB 4168 359 .100 4169
Bitsets 301MB 200 359 .107 201
Environment Minimisation 4MB .049 53 .001 121
Subtype Minimisation 4MB .049 53 .001 123
Subtype but not

Environment Minimisation 4MB .088 91 .002 .162

Table 1. The effects of various optimisations off' - calculation. Times are in seconds.

Optimisation Given a type environment and a terms, we use an efficient type-
inference scheme (see Appendix F) to compute the set of igliel judgements for
s under subsets af', which we denotél'-(s). Our initial implementation off - was
slow. However, we discovered a number of optimisations itnaroved performance
considerably in the examples we tested. The improvemenheregample (order5-v-
dwt) can be seen from the results in Table 1, which showstimeulative (orders of
magnitudejmprovement in memory usage and speed BbRswith different optimi-
sations enabled, as well as the size of the resulting ganph gwrad time taken to solve
it. See Appendix G for a full discussion of the optimisatientiniques.

6 Implementation and experiments

We have constructedHoRS (Types for Higher-Order Recursion Schemes), a model
checker for recursion schemes, which can be tested via aintefface atht t ps:

/1 nj ol nir.com ab. ox. ac. uk/t hor s/ . THORSimplements the 2-stage algorithm
presented in Section 4. A number of features are worth meinto

(i) When expanding the configuration graph in Stage 1.1, ai$téuis used when
determining which node should be chosen to be expanded. Opdes are selected
according to a breadth-first strategy. However, since we fiaund it most productive
to search deeper in the graph, for each node selected indlyisibounded (above and
below) number of open descendants are expanded accordingeiath-first search.

(i) We have implemented the two optimisations of Kobayggh&ection 3.3] (use
of canonical types and efficient computation/dim).

(iii) The computation of theF,,,-fixpoints in Stage 1.2 uses the optimised type
system with subtypingﬁS of Appendix F.

(iv) We have implemented the collapsing optimisation fa tto-trivial case and
the optimised computation @f; described in Section 5; see Appendix G for details.

We have evaluated the tool using eight example programshwdrie presented in
Table 2. The columns “O”, “R” and “Q” indicate the order of thecursion scheme,
the number of rules in the scheme and the number of state ipriperty automa-
ton respectively. The columns “Time”, “Nodes”, “Game” reddhe elapsed time until
termination (in milliseconds), the number of nodes in thefiguration graph and the
number of nodes in the game graph respectively. The coluresuR records whether
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the property was satisfied (Y) or unsatisfied (N). The finaliooi indicates the classi-
fication of the property automaton.

Example |O| R/Q|TimdNodesGaméResultProperty

D1 4 7120 1 19 16/ Y |Deterministic Weak
D2 4, 713 1] 26 17| Y |Conjunctive Weak
D2-ex 4 713 1] 26 -| 'Y [|Alternating Trivial
intercept 4|15/ 2| 35 200 31 Y |Conjunctive Weak
imperative |3| 6/3] 129 200 17| Y |Deterministic Weak
boolean2 |2|15(1 1 13 -| 'Y |Deterministic Trivial
order5-2 5[ 94/ 19) 200 37| N |Deterministic Co-trivial
lockl 41213 2| 321 32 Y |Deterministic Co-trivial
order5-v-dwi 5|11 4| 163 400 53| Y |Deterministic Weak
lock2 4|11 4/ 109 800 -l 'Y |Deterministic Trivial
example2-1|1| 2| 2| 190 200 -| 'Y |Deterministic Trivial

Table 2. Experimental data for ANT model checking.

D1, D2 and D2-ex These three examples are detailed in Examples 3, 7 and 8 re-
spectively. The “D2-ex” example has an empty entry for “Gauhge to the fact that
although the automaton is alternating (and non-conjuaytiv requires only a trivial
acceptance condition and hence it is sufficient to find anytree.

intercept This example is a model of an OCaml program which takes inputree
incoming network socket and mirrors this data to a seconputigocket. The desired
behaviour is that whenever the first socket is closed, therskesocket must eventually
close. More details can be found in Appendix H.

imperative This example is a translation of the motivating example ink;dKosk-
inen and Vardi [15]. It is a simple C-program containing twteger variables andn.

The property of interest is given in CTL adG[(z = 1) = AF(xz = 0)]. Although
C-programs are, by definition, first-order, the transfoiamaprocess (in particular the
CPS-transform) artificially raises the order by 3. Howeitds notable that the trans-
formation is considerably shorter than that required by fitsl the raising of the order
does not seem to hinder the tool. More details can be foungpeAdix H.

boolean2 This example is a translation of a Boolean program which isiobd
from a C program by predicate abstraction using 3 predicdfescheck a reachability
property. More details can be found in Appendix H.

order5-2 and lockl These examples are both taken taken from [7] but, rather than
checking the trivial properties detailed there, we instelagck the corresponding co-
trivial property. The former and also ‘order5-v-dwt’ aresitmed to evaluate the per-
formance of the tool on HORS which are, according to the wease time-complexity,
the most likely to cause efficiency problems.

order5-v-dwt This example is due to Kobaya&hThe scheme generates resources,
non-deterministically reading and closing them in a (haphef sensible fashion. We
require that if a file is ever read, then it is certainly clased

lock2 and example2-1These examples are taken from [7] and have been provided
to give an indication of performance relative to the TRec@8l totroduced therein.
Since we do not know of any other tools that can handle alt@yar conjunctive

9 Personal communication (7 April 2010)
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automata with possibly non-trivial acceptence conditjdhis sample of deterministic
trivial properties is the only comparison we are able to ey

Further directions and conclusions We have formulated the resource usage verifica-
tion problem (in accord with a parity resource automaton)R0L and shown that it
reduces to the APT model checking problem for HORS. We haveldped an algo-
rithm to automate its solution for the practically-releaase of AWT. Our implemen-
tation shows the algorithm to perform surprisingly well enadl examples despite the
inherent worst-case complexity. In future work, we plan t¢ead our tool to handle
full Buchi games, which will allow for specifications in CTland perform a detailed
study of the efficiency of our implementation.
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A Parity games, weak Richi games and AFMC

A parity gameis a tuple(V4, Vg, vo, E, £2) such thatE? C V' x V is the edge relation
of a directed graph whose node-§ets the disjoint union of/4 andVx (A-nodes and
E-nodes respectively)y € V' is the start node; an@ : V' — {0,---, M — 1} assigns
a priority to each node. A play consists in the players, AttktandEloise, taking turns
to move a token along the edges of the graph. During the fflthe token is on a node
v € V4 (respectivelyy € Vg), then Abelard (respectivel&lo’fse) chooses an edge
(v,v") € E and moves the token ontd. At the start of a play, the token is placed on
vg. Thus we define glayto be a finite or infinite path = vg v,,, vy, - - - In the graph
that starts fronwg. Supposer is a maximal play. The winner af is determined as
follows.

— If  is finite, and it ends in &-node (respectivelyl-node), then Abelard (respec-
tively Eloise) wins.

— If 7 is infinite, thenEloise wins ifr satisfies theparity conditioni.e. the least pri-
ority that occurs infinitely often in the sequen@éuvg) 2(vy, ) 2(vn,) - - - is even;
otherwise Abelard wins.

An Eloisestrategy(or strategy for short)s is a map from plays that end in&-
node to a node that extends the play. We say that a strategwinningif Eloise wins
every (maximal) playr that conformswith the strategy (i.e. for every prefix, of =
that ends in &z-node,ry o(mo) is a prefix ofr). Finally a strategy is memoryless
(or history-free) ifo’s action is determined by the last node of the play; formddy
all playsm; andm, that are consistent with, if their respective last nodes are the same
Ve-node, thers (m1) = o(m2). We say that a parity game $slvable(from vy) if there
is a winning strategy (foEloise) fromu,. It is known that if there is a winning strategy
for a parity game, then there is also a memoryless winniragegiy for the game.

Alternation-free modal mu-calculus (AFMC) and weak Biichigame

Thealternation depthof a modal mu-calculus formula is the maximal depth of a chain
of alternating least and greatest fixpoint operators. Satteenation depth is the major
determinant of complexity, it is appropriate to use it tassidy mu-calculus formulas.
Fori > 0, X; (respectivelyll;) consists of formulas of alternation deptim which the
outermost fixpoint operator in the nested chain is leasp@etively greatest) fixpoint.
(See [16] for a definition.) Thus formulas of (fixpoint freepdal logic arell, = Y.
The alternation-free modal mu-calculU®FMC) consists of formulas with no alter-
nation between least and greatest fixpoint operators. So@FE\V natural closure of
X1 U 111, which is contained iy N I15; in fact AFMC = Y N 115 (see [17]). The
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well-known equivalence [10] between APT and modal mu-dakgpecialises to one
between AWT and AFMC.

Theorem 6 (Kupferman and Vardi [11]). AWT and AFMC are equi-expressive, and
there are linear translations between them.

B Proof of Theorem 2 (Reduction)

In this section we develop a somewhat non-standard notiaveak bisimulation be-
tween labelled transition systems (viewed as game graphd)prove a general result
(Theorem 7) to the effect thatloise winning strategies of the parity game over one
graph determine thEloise winning strategies of the parity game over the ogineph.
We then show that Theorem 2 is a corollary of Theorem 7.

Remark 5. Comparison with [18, Theorem 3.10] and the proerfdim Theorem 2 ex-
tends [18, Theorem 3.10] from safety properties (trividbatata) to all properties ex-
pressible in the modal mu-calculus (equivalently alténgparity automata). Our proof
of the Theorem is both a simplification (we avoid the interiatgitransition system of
extended run-time statessee [18, Appendix A]) and an extension of Kobayashi's proof
of Theorem 3.10; in particular Theorem 7 is a theorem of soemeality.

Labelled transition system compatible with an alternatingparity automaton

Fix a set( of states and a séir of directions (or actions). Aabelled transition system
over(Q, Dir) (or (Q, Dir)-LTS, or simply LTS) is a tuple

T = (C,(-% | d € Dir U{e}), I, state, p)

whereC is a set of configurations,i> C C x C'is a labelled transition relation with
d ranging overDir U {¢}, I C C'is a set of start configurations, astlite : C — Q
andp : C — X are respectively the state and node-labelling maps. Farecience,
we sometimes write elements 6fas pairs(q, ¢) whereq = state(c); we refer tog as
thestate andc thecode

Henceforth we assume that LTSs deterministic meaning that they are

(i) deterministic quadge-labelled directed graphs: for evérg DirU{e}, if s 4, 51
ands -% s, thens; = s», and

(i) e-deterministicif s — s’ then for everyd € Dir U {e}, if s % s” thend = e
ands’ = s”. Furtherstate(s) = state(s’). We call such as asilent configuration

Thus, for eachd, the transition relation-% is functional Further, we assume that
the transition relation islirectional meaning that for eacti € Dir U {¢}, there is

a (partial) functionsuccy (say), such that for everyande, if (g, c) 4, (¢, ) then
¢’ = suceq(c). |.e. the code-component of the configuration returned bytridgnsition

function—% depends only on the code-component of the argument.
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LetA = (¥ Q,4,qrs, 2) be an alternating parity automaton. We say th@p aDir)-
LTS 7 is compatiblewith A just if (i) the state of every initial configuration is the-ni
tial stateqy; (ii) for each configuratiorig, c¢), and for eachi € Dir U {e}, there is a

T-transition(g, c) N (¢, succq(c)) iff there is a (minimal)S that satisfies(q, p(c)),
and(q¢’,d) € S. Intuitively such an LTS is the underlying graph of a parignge that
characterises the decision problem7isiccepted byA.

We say that a configuratiofy, ¢c) has aunique out-transitiorjust if {(¢/,c) |

(¢,¢) -5 (¢, ), d € Dir U{e}} is a singleton set.

Given a(Q, Dir)-LTS T = (C, <i> | d € DirU{e}), I, state, p) compatible
with an alternating parity automatod = (¥, Q, 4, 1, §2), we define a (parity) game
G(T, A) as follows.

— The start position is the sét i
— If the current position is a configuratidi, ) then it isEloise’s turn to move.

Eloise chooses a minimal s&t= {(q1,d1),- - -, (qx, di)} that satisfies (¢, p(c)),

and the new position is the setccx (¢) := {(qi, suceq; (€)) | 1 <i < k}.

— If the current position is a configuration 8 then it is Abelard’s turn to move. He
chooses some elemefat ¢) € B, which becomes the new position.

The winning condition is defined as follows. If a player is bleato move at a
position, then the other player wins. Suppose an infinitg plsues

(quCO) C’() (Q1,Cl) Cl .

if the least priority that occurs infinitely often in the semee2(qo) 2(q1) 2(g2) ---
is even, therkloise wins; otherwise Abelard wins.

SetDir = {1,2} U Q, whereQ is a fixed set of states, af@f = Q U {qun»}. We

consider two instances 6f)’, Dir)-LTS compatible with an alternating parity automa-
ton.

LTS determined by and W. Fix a RUL programD and a parity resource automa-
tonW = (Q, L,6,Qr, ). Then, using the notation in the preceding, the transition
systemJ"_, 7, (i.e. disjoint union of7,, of Definition 1, where each; is a re-
source of sort; € Q; = {q1, -+, qn}) is a(Q’, Dir)-LTS T = (Cy, (-5 | d €
Dir U {e}), I, statey, p1), compatible with the alternating parity automatdp, =
(@', X1, 01, Qun, 91> where

= {F:1|1<i<nju{new] :1|1<i,j<n}

U {acc : 1, acc, 1|aeL}U{if*:2, x: 1}

andé; is the map:

(g, Fi) = (€,9)
(q,lf*) — (L(q)A( ) - N
i 17 un/\2 4 I = Qun aNA? =
(2, nev\ﬂ ) { (1,3) v ot;]]erv:/]lse ’
q,aCGJ)HV Nyeo,(1,d) if g€ Qandd(q,a) = {Q1,--,Qn}
=)
y k)
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The node-labelling map, : C; — X; does the obvious thing, except mapping
(H, acg, ye), toacg if x = y, and toacg, otherwise; and mapping, new’ e),
tonew;. The priority mapf2; extends? by mappingg.., to the largest priority.

Lemma 4. The game&j (D, W) is justG(T1, Aw ).

LTS determined by HORSp and APTAp . From the transform, HOR&p =
(XN, R)and APTAp w = (X,Q", ', '), we define dQ’, Dir)-LTS T3, compat-
ible with Ap 1y, whose transition function is defined as follows:

(Q7Fé) — (Q7e [e/y])
(q, brise1 e2) LN (g,ei) i=1,2
(qv brnew €1 62) L> (qv ei) 1= 17 2
q 1 (q/a 6) if q = Qun
(@ve) = (qany,€) otherwise
1
(Qanyv a 6) — (QGnyv e)
(g,ae) < (¢,e) if ¢ € Q,andq € S satisfiesi(q, a) for some minimals
(g,%) == (g,%)

and the priority function?’ is that of the automaton. The following straightforward
lemma is just the standard restatement of accepting r@s-ae winning strategies.

Lemma5. LetGp and Ap w be as before. ThefGp] is accepted bydp v if and
only if Eloise has a winning strategy for the ga@€7z, Ap.w ).

Winning-strategy bisimulation between parity games

A notion of weak bisimulationLet (C;, <i> | d € Dir U {e}), I, state;, p;) be a
(Q, Dir)-LTS, fori = 1,2; and lets € Cy andt € Cs. We define

(i) s ~ tiff state;(s) = states(t), and there exist’,t’ such thats ——» s’ and
t st ands’ ~ t'

(i) s~ tiff
- for everyd € Dirands’, if s -2 s’ then there exist”, ¢’ such that NI,

ands’ %2 s” and each configuration in the sequeneésand—»(except the
last) has a unique out-transition, asitl~ ¢’, and

- foreveryd € Dir andt/, if ¢ —%, ' then there exist’, s’ such that BN N

andt’ —» s t” and each configuration in the sequeneésand—»(except the
last) has a unique out-transition, asiti~ ¢/

Theorem 7 (Winning-strategy bisimulation). For i = 1,2, let7; = (C;, <*>| de
Dir U {e}), I;, state;, p;) be a(Q, Dir)-LTS, compatlble with an alternating parity
automatond; = (X, Q, d;, £2;), such that
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(i) for each initial (¢,c1) € I, there is some initialg, c2) € I such that(g,c;) ~
(g, c2); conversely for each initialg, c2) € I, there is some initialg, ¢1) € I
such that(g, ¢1) ~ (g, ¢c2)

(i) whenever(q:, c1) ~ (g2, c2), thendi (g1, p1(c1)) = 62(qz, p2(c2))

(i) 21 = 9.

ThenEloise has a winning strategy {@(77, A, ) if and only if he has a winning strategy
in (}(7§,¢42).

Proof. (Sketch) Suppose is a Eloise winning strategy fof (73, 42). We construct

a winning strategy for G(71,.4;) by imitating 7, and we do so round by round.
Suppose Abelard picKg, c¢1) € I; with (g, ¢1) ~ (g, c2). It follows from the definition

of ~ that for somec] and¢), we have(q,c}) ~ (q,c,). Because ot-determinacy
and A;-compatibility, there is no choice far at each configuration in the sequence
(¢,c1) —=» (¢, c}), exclusive of(¢, ¢}). At the configuration(¢, ¢, ), Eloise copies the
strategyr’s action at(q, ¢;), which is a valid move because of assumption (ii). Now,

suppose Abelard chooses the transitigre} ) 4, ~, it foII_ows from the definition of

that there are configurations, 72 such that(g, ¢;) —=-%» v and(q, ¢5) —-25 5

. . ' o d d
with 47 ~ ~2. Since each configuration in the sequeriger]) ——» 1, except

the last, has the unique out-transition property and.scompatible s has no choice
at each configuration in the sequence. Thus we have compatedound of strategy
simulation. We argue inductively in a similar fashion. Tla¢isfaction of parity follows

from assumption (iii).

Relating the two LTSs

We relate the reduction of a RUL program and its recursidreste translate. We write
(H, e), ~ (g,t) to meanstate (H, ¢),, = ¢, and
(i) if x & dom(H) with H = {y1 : q1,---,yn : qn} thent = e[K/y;] (and neces-

sarily g = qun)
(i) if x € dom(H)thenH ={y1:q1, -, Yn : qn,x : q} andt = e[K /y;, I /x].

Henceforth we shall writ¢—)1 to mean the substitutio-)[K /v, I /] or (—)[K /y),
according to whethet € dom(H) or not.

In the following we show that the tw@Q’, Dir)-LTSs, 7; and7s, satisfy the as-
sumptions of Theorem 7 by a case analysis. Theorem 2 theowfolirom Lemma 4
and Lemma 5. First we remark that there is no harm in ignorigsitions in7; of the
form

(g br (' K) (7 (' 1)) 25 (q,v7 (et 1))

(and hence all transition thereafter, and so we may re@aabs a(Q’, Dir)-LTS) be-

cause the transition that follows is necessafilyv4 (ef I)) SN (Gany, €' I), and it

is easy to see thatloise has a winning strategy starting from a configuratibstate
qany-
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1. Assumez & dom(H).

(H, new! e), (Gun,new! ef)
— e
(HU{y:q}, ey)e (HU{z:q}, ex)s (qun br (e K) (v (e 1))
—
(qun, ef K) (qun, v? (eT 1))
1

(g,€' 1)

R

We have(H U {y : ¢}, ey)e =~ (qun,e! K)and(H U {z : ¢}, ex), ~ (q,e I).
2. Assumer € dom(H) and sog € Q.

R

(HU{z: q}, new! e), (g, new? ef)
/ \1’6

(HU{z:q,y:q'}, ey)a (g, br (e K) (v (' T)))

(qany; el I)

We have(H U{z:q,y:q'}, ey). ~ (¢, e K). As remarked in the preceding, we
ignore the—>-transition on the RHS and hence all transitions thereafter
3.
(HU{z:q}, accze)s ~ (g,acq Ieh)
7y o
(H U {ZE : ql}7 6)1 (q7[aeT)
(g,aeh)
q/i/
(¢,eh)
We have(H U {z : ¢'}, €). ~ (¢, e").
4. Assumex & dom(H)
(HU{y:q},acCye)s = (qun,acc K e)
(HU{y:dq}, e)a (qun, K ae')

(qun, eT)

We have(H U {y : q}, €)s = (qun, e').
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(HU{z:q,y:q'},ackye). ~ (g,ace Kel)
3! o
(HU{z:q,y:4q'}, €)a (¢, Kaeh)
“
(g,¢")
We have(H U {z : ¢,y : ¢'}, €). ~ (g, €').
6.
(H,Fe). =~ (q Fel)
E\L E\L_
(H, '/ = (g,¢""[eT/z])
Note that a special case(is, S)z, ~ (qun,S) for eachi.
7.

1

(H,ifxeres). =~ (q,ifxelel)

R s

(H7 el)l' (H7 62)90 (q7 61{) ((Le;)

We have, fori = 1,2, (H, €;), ~ (q,ej).
Thus we can conclude that wheneyéf, e), ~ (¢, e), then(H, €), ~ (¢,ef). In
particular, satisfaction of condition (i) of Theorem 2 fndls from Case 6. It is straight-

forward to check that condition (ii) is satisfied by inspegteach of the above cases.

C Linear-time algorithm for solving weak B ichi games

The weak Buchi gam& (') = (Va, Vg, E, vy, £2') is constructed using the fixpoint
I" obtained from Stage 1.3 and an auxiliary functibBnv -, whose domain of defini-
tion is I", which mapsF : 0 to {A C I' | A - R(F) : 6}. The underlying directed
graph has node-sé&ly U Vg, with start nodey, := (S : ¢;). We set:

Va={(A,q)|F(F:0).Ac TEnvp(F :0) N q= state(0)}
E:={((F:0),(A,state(d))) | A R(F): 01 U{((4,q),(F :0)) | (F:0) A}

The priority function2’ maps(F : 0) to 2(state(6)), and(I',q) to 2(q), where
2 is the priority function of A. G~ (I") inherits a partial ordeK, over a partition
{V1,--+,V,} (say) ofV4 U Vg, from the AWT A4, as in Lemma 2.

Solving weak Bchi game(Va, Vg, E, vy, £2) in linear time. We describe a solver for
an (arbitrary) weak Buichi game. First construct a lineaeong< of the partition of
Va U Vg such that< C <; w.l.o.g. assuméd; < Vo < --- < V,,. The algorithm
proceeds by rounds: at the end of roudndll nodes inV; are marked by or f. The idea
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is thatEloise has a winning strategy from a node if, and only if inarked:. We label
each node by a pair(num_left, pred_list) wherenum_left is a counter (initialized
to v's out-degree) that maintains the number of successor ngatet® be processed
(beforev’s mark can be determined), amaed_list is a list ofv’s predecessors. The
algorithm maintains a numbe(initialized to 1) indicating the current round, and two
stacksStack: and Stack¢. The stacks contain nodes which have been matkaad f
respectively but have not yet propagated their marks fur8tarting from round 1, the
algorithm proceeds as follows.

As soon as a node is markedresp.f) (and if it is not already on a stack), it is
pushed ontdtack: (resp.Stacks). As long asStack: or Stacks is non-empty, a node
is popped from a stack, and we process every (unmarked)#iodé¢he pred_list of v
using the following rules.

- Case v is markedt. If v/ € Vi then marky’ with t else{if num_left = 1 then mark
v" with t else decrementum_left }.

- Casewis markedf. If v € V4 then marky” with f else{if num_left = 1 then mark
v’ with f else decrementum_left }.

Atthe start, when botltack, andStacks are empty, mark all terminal nodesc V;
(i.e. those with out-degree 0) withor f according to whether € V4 or Vg. The stacks
are then processed as outlined above and the marks propagdte as possible. When
the stacks are again empty, all remaining nodes V; are marked in accord with the
type of V; (i.e. the mark ist or f according to whetheV; is accepting or rejecting)
and the stacks are processed agais;then incremented. In this way, every node in
V; is marked and its effect fully propagated at the end of rouiidoise has a winning
strategy fromyg just if vy is markeds.

Since each node is pushed onto a stack only once, and singedbessing of a
node popped from a stack involves a constant number of apesabn each of its (as
yet unmarked) predecessor node, the overall time compledinear in the size of.

D Proof of Theorem 4 (Correctness)

Proof. (i) Suppose, for a contradictiofj(z] is accepted by4 but =4 does not
terminate on inpudx. LetC, be the configuration graph that is constructed at the end of
Stage 1.1 in the-th iteration of the loop, and l&t be the union of all th&;’s. Then,
since the expansion process is assumed to be&faithe closed configuration graph. It
follows from Lemma 8 that there existsuch thatl: C ElimTE (I¢,). By Lemma 3,

at thei-th iteration, stage 1.3 constructs the largest type enwient/” that is a fixpoint

of Fow andI” C ElimTE (I¢,). Now it follows from Theorem 8 thak is a fixpoint of
Fuw @nds : go € I'c. Thuswe haves : qo € I C I'. It follows from Theorem 9 that
Eloise has awinning strategy@r (I"). Hence the algorithng 4 on inputG terminates

by thei-th iteration, returning YES.

(i) Suppose]G] is rejected byA and the algorithmE 4 terminates on input.
Either there is no run-tree of over[G], or there are but none is accepting. If the former,
then after some finite iterations, the algorithm exits andrres NO, as desired. If the
latter, then it follows from Theorem 9 th&loise does not have a winning strategy for
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G~ (I'), for every type environmedt that ever reaches Stage 2 during the computation
(for if Eloise had a winning strategy @~ (I") then the same strategy would be winning
in G~ (I¢), contradicting Theorem 9). Hence the computation will eotrtinate. Thus
this case is impossible.

The rest of the subsection is concerned with Lemma 8 and €he8tr The proofs
are obtained by extending Kobayashi's arguments to theweasee A is an AWT. Letr
be a sequence ové®, 1,2, .-, m} wherem is the largest arity of terminals. We write
C () for the nodeV such that a path from the root 19 is labelled byr.

Let C be the closed configuration graph, aficbe a finitely expanded graph. Sup-
pose that the nodé(r) is labelled by|ts, ¢]. We define the relatiod’ <., C by
structural induction on the sort ofas follows.

(i) If t has sorb andt, ¢/(») = {q} thenC’ <, ; C.
(i) Supposé has sortc; — ko; it follows thats has the forms, s’. ThenC’ <, ; C
just if the following conditions hold:
(a) Cl jﬂ',tso C
(b) for every element of;, ¢(.y—which must have the form\;", 7, — 7/ with
7' € Ti4,,0(x), fOr €achi, there exists a path; such thatr; € 7, c(r,)
andC’ <, s, C.

Elim(q) := {q}
Elim(/\:i1 Ti = T) = {/\211 0; — 0| 0; € Elim’ (1;),0 € Elim(7)}

4, | Elim(r) U{T} if T contains a type variable
Btim (r) = {Elim(T) otherwise

By abuse of notation, we use the same notation for the paetextension oflim to a
set of types; e.gilim (T, c(x)). We defineElim TE as the pointwise extension élim
ie.

ElimTE(I'):={F :0|F:7€1I,60¢c Elim(r)}

Lemma 6. LetC be the closed configuration graph.df <., C then the following
holds:

(I) If C” is obtained from expansions 6fthenC” <., C
(D) Tec € EBlim(Ticr ()

Proof. Let the label o€ () be[t s, ¢]. The proof proceeds by induction on the sort.of
In case the sort dfis o, then by definition o€’ < ; C, we haver, ¢/(r) = {q}. By the
definitions of expansion and of; n, we haver, c/(xy = Ty cr(x) = Trox) = {4}
Thus we hav€” < ; C andr; c(») = {q} € {q} = Elim(7T, /() s required.

If the sort of¢ is k1 — ko then it follows from the assumptiof <., C that
(i) s = so &, (ii) every type inT, () has the form\™", 7, — 7, (iii) C’ =x:s, C,
and (iv) for eachr; there existsr; such that; € 7, c(xnr,) andC’ <;r,s C.By
the induction hypothesis (1), we ha@® <. :s, C andC” <., s, C, which implies
(1). By the induction hypothesis (Il), we also have, ¢y € Elim(7; ¢ (r)) and



30 Lester, Neatherway, Ong and Ramsay

Tso.Clnm) S Blim (T c/(xx,))- By the definition ofr, ¢/ (), an element of which has

the form
m k
/\ A /\ og; =T
i=1 j=1

wherer; € Ty c/(rr,) @NAT € T4 cr(x)- By definition of Elim, we can construct
each element of ¢(,) as an elemenf\\"  a; A /\;?:1 Bj — 7 of Elim (7, c/(x)) @S
follows: (i) choosex; to ber;; (i) from Elim(o;), chooses; to beT if o; contains a
type variable, otherwise; is an element of, ¢/~ ~,) for somei, and so, choose,
to ber; instead.

Lemma 7. Let N = C(w) be a node of a closed configuration graghand suppose
that IV is labelled with[t 3, g]. Then there exists a finitely-expanded graplsuch that
C'=<::C.

Proof. The proof is by induction on the sort ofIf the sort iso then the result follows
immediately: just expand the graph uniMl is expanded, and legt’ be the resulting
graph.

If the sortisk; — ko thens = s s’ and letr, y = {/\;J':1 T =T |1<i<
n}. By the induction hypothesis, there exists a finitely exgahdraphC{, such that
Cy ==ts, C. By definition of 7, x, for eachi and eacly, there existsr;; such that
Tij € Tsoc(xmy)- BY the induction hypothesis, there exists a finitely exgahgraph
Ci; such thalC; <., s, C. Thus the union o€y, Ciy, -+, Ci, -+, Chpy 5 Crp s
satisfies the required condition by Lemma 6(1).

Lemma 8 (Key).Suppose thalG] is accepted by, and letC be the closed configu-
ration graph forG and.A. Then there exists a finitely expanded configuration g&ph
such thatlx C ElimTE(I¢) for every finite expansiofi” of C'.

Proof. For eachF; : 7;; € I¢, pick a nodeN;; = C(m;;) suchthaty; € 7r, n,;. By
Lemma 7, there exists a finitely expanded grdgtsuch that;; <., r, C. LetC’ be

the union of theZ;;'s, andC"” be a finite expansion of it. By Lemma 6 () < r,,.r, C
for everyi andj. It then follows from Lemma 6 (1) thak: C ElimTE(C") as required.

Theorem 8. Assumg(] is accepted by AW. If C is a closed configuration graph of
G over A, thenG is well-typed under¢ i.e. for all (F' : 0) € I, there existd” C I
suchthatl’ F R(F) : 0, and(S : qo) € I

Proof. For each that occurs in a head position in a naleof the configuration graph
C (i.e. the label ofN has the form(ts, ¢, closed)), and for eachr € 7, n, we first
construct a type derivation trdé, . y of I" -t : 7 for somel” C I¢.

Now, supposef’ : 0 € Iz andR(F) = Azy---x,,.s. We need to show that
there existd” C I¢ such thatl” - Az;---z,,.s: 0. By construction ofC, we have
0 € TN, for some nodeV of C. The nodeN must be labelled WithE 1 - - - £, g]
and has a single outgoing edge to a nddewith label [s[t; /21, -, tm/Tm], q]. BY
constructiong has the shape

A{rv, [N e Siy == A{rw, | N € S} = g
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where eachy;, is some type inr, n,, S; iS a set of compatible nodes whereoccurs
in a head position, anfly, - - -, S,,, are mutually compatible. (The intuition is that the
typed is extracted from ainglerun-tree that “containsiV.)

For eachi, let S; be the set of noded/; in S; such that for somé” C I, I"
ti : TN, OCCUISINII [y, /o, ..t f )7, N7 - FTOM the derivation treB g, /oy ..t fam] N7
we can obtain a derivation for

AUU{miZTNi|NiESZ{}|—S:q

=1
for someA C I¢. SinceS! C S;, we getA - Axy - - - x,,.5 : 0 by (ABS) as required.

The following key theorem follows from the proof of the coraf@ness theorem of
Kobayashi and Ong [6].

Theorem 9. LetG be arecursion scheme aotlan AWT. ThefiG] is accepted by if,
and only if, the closed configuration graptexists, andloise has a winning strategy in
the derived weak @chi gameG~(I¢). (Note that/¢ is necessarily finite, even though
C may be infinite.)

E Proof of Theorem 5 (Complexity)

(i). The case of alternating trivial automata is proved in [Hére we deal with the
other two. The upper bound follows from theEXPTIME completeness of modal mu-
calculus / APT model checking [2]. The lower bound for altding weak automata
follows from that for alternating trivial automata, sindesubsumes the latter. In the
following we establish the-EXPTIME hardness for the alternating co-trivial case.

Engelfriet [19] proved a hierarchy theorem for higher-ordeshdown alternating
word automata (AWA):

Theorem 10 (Engelfriet 1991) For eachk > 0, the class of finite-word languages
recognized by ordek-pushdown AWA is) ;. DTIME (exp,dn).

We use the Theorem to show that the acceptance problem aofiatitey co-trivial
automata for trees generated by ordesafe (and hence arbitrary) recursion schemes is
k-EXPTIME hard.

Fix an input alphabe#i. An order-k£ pushdown AWAs given by a 7-tuple

A= <P,)\,])(),F,A,A,F>

where the labelling function : P — {E, A} partitions the state-sdt into E-states
and A-statesp, € P is the start statel” is the stack alphabet) C P x I x (AU
{e}) x P x Op, is the transition relationQp,, is the set of ordek stack actions, and
F C P is the set of final states. We assume that for eyeand~, if there are some
andé such thatp, v, ¢,¢,0) € A, then itisnotthe case that there agé 6’ anda € A
such that(p, v, ¢, a,0") € A. l.e. no configuration can have both drtransition and
ane-transition. Recall that a word € A* is acceptedoy an AWA A if there is a finite
run-tree ovetw such that every leaf is a final state.
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For our purpose it is convenient to define the acceptance aird by an ordef
pushdown AWAA in a game setting. Take a wotd = w; - - - w,,| € A* (with each
w; € A), we define thecceptance parity gamécc(w, A) as follows. Thee-nodesare
elements of the se®g x [1..|w|] x Stacky(I") whereStack(I") is the set of ordek
stacks over the stack alphabiét similarly for the A-nodes The edge-set is defined as
follows: Take a nodép, i, s).

— For eachp, top, s,a,p’,0) € Awherea = w; € A, there is an edge frottp, 7, s)
o (p/,i +1,6(s)).
— Foreach(p, top, s,€,p’,0) € A, there is an edge froitp, i, s) to (p', i, 0(s)).

Further we designate every node of the fofm|w|, s) wherep € F as anaccept
node i.e. winning foEloise, and every terminal node (i.e. no outgoing edges)ith
not an accept state asejectnode i.e. losing foEloise. The priority function? is the
constantly-1 function. (ThuEloise loses every infinite play.) We say that a werds
acceptecby the pushdown AWAA just if Eloise has a winning strategy in the game
Acc(w, A) from the start nodépg, 1, L) where L, is the emptyk-stack.

We can express the gamdec(w, .A) as a parity gamé& = (', ') defined on the
configuration graph of an ordérpushdown system (PDS)

Ruw.a = (P x[1.|w],(po,1), I, A")

where the transition relatiod’ C (P x [1..|w|]) x I x (P x [1..|w|]) x Op,, is defined
as follows: let, p, p’ andf range over the appropriate sets

)EA/ <~ (pa/%wiap/ae)EA
yeA = (p,v,6p,0)€ A

((p,3),7, (i + 1),
(P, 3),7, (P, 9),

> D

The (immediate) accept and reject nodes remain the samdab&king map)\’ of the
parity gameG is given by the map\ restricted to the first component of the control
state(p, i), and the priority function?’ is the constantly-1 function.

Thanks to Emerson and Jutla [10], we have the following rédoc
Theorem 11. There is a (polynomial) reduction &f1to P2.

P1. Given a parity gamé& over a directed graph, doddoise have a winning strategy
from the start node?

P2. Given an APTAq and a directed graph, is the unravelling of the graph accdpte
by the automaton?

A useful fact is that the unravelling of the configurationhraof an ordem PDS
is a ranked tree generated by an ordd?DA; one only has to note that an appropriate
labelling of the edges makes the ordeRDS graptdeterministic

Lemma 9. Suppos&R = (I',Q, A, qo) is an ordern PDS. Lett be the tree obtained
by unravelling the configuration graph & and by labelling every node by the control
state and theéop, stack symbol of the corresponding configuration. Thisrgenerated
by an ordern PDAR of size polynomial in the size &.
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Proof. Consider the following order-PDA R = (3, I,Q’,48,q0) where we set:

— Trans = {(¢,0) | Ip € Q.Fa € I' . (p,a,q,0) € A} is the set of all transitions
that can be applied iR.

- Q' =QUTrans

— X = @ x I' is the set of shapes (we ignore the link in the case of CPDA}laad
arity of (¢, a) € Xis|{(¢’,0) | (¢,a,¢’,0) € A}|.

— Foreveryg € Q, and everya € T, 6(q,a) = ((q,a); (q1,01),- -, (qk, O%)) Where
{(q1,01),- -+, (ak,0r)} = {(d',0) ] (g:0,¢',0) € A}.

— For every(q,0) € Trans, and everys € I',5((g,0),a) = (¢, 0).

Then one easily checks thﬁtgenerates.

Theorem 12 (Knapik et al. [20]).Fix a ranked alphabet, and lét > 0. Order safe
recursion schemes and ordérpushdown tree automata generate the same class of
ranked trees. Further there are polynomial inter-tran&at between the formalisms.

We can now prove the desired result.

Theorem 13. LetG be an orderk recursion scheme, and be an alternating co-trivial
automaton. The problem of whetHg¥] is accepted by is k-EXPTIME hard.

Proof. Fixak > 1 and ad > 1. By Theorem 10, there is an ordepushdown AWAA
and somev € A* such that it takes time at leastp, d|w| to decide whetheEloise has
a winning strategy in the acceptance ga#e(w, .A), which can be viewed as a parity
game( (say) over the configuration graph of the orddPDSR,, 4. By Lemma 9 and
Theorem 11, the solvability off over R, 4 is reducible to the question of whether

the APT A accepts the tree generated by the ord®bDA m. By Theorem 12, let
Sw,4 be the ordet: safe recursion scheme that generates the same tfeg as Note
that. A has a trivial acceptance condition — every node has prigrityence, deciding

whetherAq accepts the tree generated by the ordsafe recursion schentg, 4 takes
time at leastxp,d|w|.

(). If A is an APT, then the complement of the langualfed) is also recognized
by an APT which is writtend. Kobayashi observed that in cageis deterministic
trivial, A is a disjunctive APT [7]. Thén — 1)-EXPTIME decidability then follows
from the(n — 1)-EXPTIME completeness of the disjunctive APT acceptanoblem
for trees generated by orderrecursion schemes [14]. The same argument works for
the case of deterministic weak automata (and hence alsceterrdinistic co-trivial).
Take a deterministic weak automatgnwith a priority functions2. In A, which is a
disjunctive APT, the priority may? is the inversion of2. Thus.A accepts a tregjust

if there is no run-tree of4 overt (which is equivalent to the existence of an “error
path” w.r.t. A), or the run-tree ofd over thet has an infinite path in which 1 is the
infinitely occurring priority. The(n — 1)-EXPTIME hardness for deterministic weak
and deterministic trivial automata follow from tlte — 1)-EXPTIME completeness of
the Reachability Problem [14].
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F An efficient intersection type system with subtypingx/(‘, <

Kobayashi has shown in [7] that to make verification of reimmrschemes at higher-
orders tractable, even for trivial automata checking, #dsential to apply two type-
based optimisations during inference. The first optimigais a kind of symmetry re-
duction of the search space, in which only intersection syipea subtype-canonical
form (with respect to the standard notion of subtyping oerisgction types) are vis-
ited by the search. The optimisation carries its own costréer to type the canonical
forms arising from the algorithm, the systa&rf must be extended to allow subtype
reasoning.

Whilst we desire the additional flexibility of subtyping imd®r to perform symme-
try reduction, we also wish to minimise the size (and cominaime) of TEnvp(F :
7) for each bindingF : 7. In order to strike the right balance, we present a new type
systemXA“K, which consists of replacing the rules€A and (ABs) of XA“ with the
following:

Njer, 0ij < \Si foreachi € {1,---,n}
Lt :0;; foreachic {1,---,n},jecl
{E: NS, %...%/\SnHG}UU?ZIUjEIiFij Er T

7 (L-APP

Iixy : NSiy,- 2, : NS, Ft: 0 FVar(t) ={ziy, -,z }
Xz xpt: ANS1—= - = AS,—0

(L-ABS)

in whicho < 7 asserts the usual intersection subtype relation betwgasdyandr.

The system is a compromise between allowing sufficient qaeitgasoning to type
the canonical forms arising from the model checking algonitand constraining the
structure of type derivations so that they are more amenalpmof search. The key to
the latter is that the system possesses a strong form of kffierswla property. We say
that a typer is asuffixof a typer just if 7 is of the formA S; — --- — A Sk — o for
somek > 0.

Lemma 10 ()\“A“,S Suffix Property). If the judgemenf” - R(F) : 7 is derivable for

someF : 7in I" whereR(F) = Xz : 0.t, then, for every (proper) subderivation with
some goal judgement - s : o, the typer is a suffix of some type boundiru{z : 6}.

A consequence of the property is that, given a type enviranifieand a ternt, it
is straightforward to compute the set of valid type judgetaéor s under subsets df,
which we denotél'-(s). That is, given type environmewrt and intersection typé:

(A,0) eTr(s) < ACTI AN Ak s:0

From T (s), it is easy to deriveF,,(I") and TEnvr (letting s = R(F') for each
non-terminal symboF'), which allow for the computation of the fixpoint and the con-
struction of the game graph respectively.

Given a purely applicative term := £tq - - t,,, we defineT(s) by a recursive
procedure as follows. For ease of exposition, we abuseiaott write : 0 € I'to
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indicate that : 0 is a valid conclusion either by the ERM) rule (in case is a terminal
symbol) or by the (¥R) rule (in cas€ is a non-terminal or variable symbol).

({6 5 ASi > 5 ASu > 0 UUL Ujer, Tigs 0) € Tr(gta---ta)
—
ENS1—= =2 ANS, =0 e A
{we{1,...,n}.{(nj,9ij> |J €LY CTr(t) A Ajer, 05 < N\ Si

Observe that, owing to the suffix property, the computatibTp(s) need only
consider types id" and not all those types in the upward closurdainder< (which
would be disastrous for the construction of the game graéjdhthe types that occur on
the right hand side of the defining equation are either ddrixem a recursive call or
themselves belong to the environmént

Typing judgement incorporating subtyping is necessary

Consider the higher order recursion schefe- (X', A/, R, S) with terminalsX and
non-terminalsV" given by (left and right columns respectively):

a:o—0—o0 S:o

b:o—o0 F:((o—=0)—0)—o0
c:o0—o0 G:(o—0)—o0

i:o M:0—0

and production rule® given by:

S—FG
Ff—a(fb)(fM)
Gg—gi

Mz — a(bz)(cx)

Furthermore, fix the following deterministic trivial autatonA = (X, Q, ¢, go) whose
states ar€) = {qo, ¢1 } and whose transition function, is given by:

b i t
P >qd qo—d Go—r€ Qo—2>q g€

It should be clear thatl acceptg[G]. Yet the algorithm will produce a type en-
vironmentI” containing? : ((go A ¢1 — ¢0) — qo) — qo as the only binding for
non-terminalF’. Consequentlys is not well typed undef in the type systenwithout
subtyping since, in particular, in this system it is not thsecthat:

I'=R(F): ((q0 A g1 — qo) = q0) = o
For such a statement to be derivable requires a derivabdejudnt
fil@ona —q) a0t f:(90—q)— q

as a prerequisite.
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G Optimisation

(i) Environment CanonisatioM.hetypesin our fixpointI™ are already in a canon-
ical form. We canonise thenvironmenby finding, for each set of bindings to a non-
terminal F; : A S;, the canonical form of the conjunction of those typks;. By
Corollary 2 in Appendix G.1, the resulting environment rémsaa fixpoint. Although
the reduction in number of bindings may be small, this cdhtetve a significant effect
on the speed and memory usage of the computation by redum@rganching factor.

(i) Bitset Environment Representatigil non-terminal bindings occurring in the
computation ofl' - are drawn from the fixpoint', which is usually small. Therefore we
encode this portion of a type environment efficiently as adfilength bit string, each
bit signalling the presence or absence of a particular bindhs well as reducing the
average memory needed to store an environment, this alssages the speed of union
and subset operations on environments by reducing themmtaesbit-level operations.

(i) Environment MinimisationWhenever a single environment is to be picked
from a set of possible environmenty, - - -, I',, it is safe to consider just a minimal
subset; see Appendix G.2 for the justification. Here, a mahisubset of a set of
environments is the smallest C X such that, for every” € K, there is aA € J with
A C I'. Such a subset can be found quickly when using a bitset reptagton.

In applying the rule (L-AP), we minimise the sets of environments in 4 places. This
drastically reduces the explosion of environments withia tule.

(iv) Subtype Minimisationwhen applying the rule (L-AP) and picking for each
argument subtypeAjEL_ 0;; < NS, itis sufficient to consider a minimal set of per-
missible subtypes; see Appendix G.2 for a discussion. Thignisation does not re-
move any environments that are not removed by environmamtmisation. However,
it is still worthwhile as it reduces the explosion of envineents at an intermediate stage
in the computation. The final row of the table demonstratessaptimisation being ap-
plied without environment minimisation; this shows thasifairly effective by itself.

(v) Collapsing optimisationf the tree generated by a recursion scheme is accepted
by a deterministic trivial automaton, and the tree is firtiben it is accepted by the cor-
responding co-trivial automaton. The single-state thaigomaton with transitions for
every terminal in an alphabet accepts every tree labelléu that alphabet. If the cor-
responding co-trivial automaton accepts a tree, then it tneifinite. So to determine if
a co-trivial automaton accepts a tree, we show that a rinetxists (as for a trivial au-
tomaton) and then check finiteness using the single-statievial automaton, rewriting
all states in types being considered to a single type,

G.1 Environment canonisation: soundness proof

We definel™” < I' to meandom(I") = dom(I"), and for everyF' : 0 in I, there exists
F:0"inI"suchthat’ <.

Lemmall.If I' + &ty ---t, : 7 (eacht; is assumed to be an applicative term) and
I'<rthenlv¢&ty---t, : 7 forsomer’ < r.
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Proof. Letd = AS; — --- = A S, — 7,and supposg: fisin . Letd' = A\ S| —
---—= A\S! — 7/, and supposg : & isin I with 8’ < 6. l.e.7" < 7, and for each,
A S; < A\ S.. From the assumption, we have:

(i) foreachi, foreachj € I;, I - t; : 6;;
(ii) foreachi, A, 0i; < A\ S;
(Ill) I'= {E : 9} U Ul UjGI-; Fl]

For eachi andj, choosel’;; C I" such thatl/; < I3;. It follows from (i) and the
Induction Hypothesis that for ea¢tandj, I'/; I~ ¢; : ¢}, for somed;; < 0;;. It follows
from (i) that for eachi, A\ ;. 0;; < A S;. Setl” := {{: 0"} UU; U, e, I7;- Then,
I'" < I',and by (L-ArPP), we havel’ - £ty - - - t,, : 7' as required.

Jel;

Corollary 1. If ' R(H) : candI” < I"thenI”" + R(H) : o.

Proof. Supposer = AS1 — - = AS, = ¢, R(H) = Axy - - zp.t andFVar(t) =
{1'1'1; cee ,IL‘ik}. Then,

Iz, :/\Si1,~~~,xik :/\Sl-,C Ft:q.

SinceF’,mil 2/\Si1,"-,$ik :/\Sik < F,mil 2/\Si1,"-,$ik Z/\Sik, it follows
fromLemma1lthal”, z;, : A Siy, -, 24, : AN Si, Ft:g, andsol” - R(H) : o.

Corollary 2. If I is a Fyy -fixpointand{ F' : 6, F : ¢’} C I" with ¢’ < @ thenI"\ {F :
0} is also aF,-fixpoint.

Proof. Take a binding7 : ain I'\ {F : 0}. Sincel is aFyy-fixpoint, A+ R(H) : «
is provable for someA C I'. Let A’ be obtained fromA by replacing the binding
F:0byF :0.SinceA” < A, thanks to Corollary 1, we havd’ - R(H) : . As
A C(I\A{F:6}), '\ {F : 0} is also aF,-fixpoint.

G.2 Optimising Tr: subset minimalisation

The motivation for this optimisation stems from the obs&orathat in the weak Biichi
game derived frorT -, certain edges fron-nodes can be safely removed. Namely, if
there are edges from a@d-node(F : 9) to I and " with I C I, then remove the
edge tol”’. (If Abelard can win froml”, then he can also win fro’, as it offers him
more options for his next move. So there is never any reasdfidise to playl” when
she can play". Hence it is safe to remove the edgelth) We aim to use this idea to
construct an optimised version Bf-, T9"".

Consider the computation @f (¢ ¢4 - - - t,,), looking specifically at a single argu-
ment terméy. Let/ = {U4,...,U,,} be the set of all sets;, such that\ U; < A Sk
and for eacl¥ € U; there exists & C I" such that =, 6) € Tr(t). To defineT",
we consider a subsét = {U,,,---,U,, } of U thatis:

(i) completefor everyi € [1,m] there exists g < [1,1] such that/,, C U;;
(i) minimat for eachj < [1,[], if for somei € [1,m] we haveU; C U,, then
U; = Us,.
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Note that ifU; = @ for somei thenl/ = {@}.
To see the effect of the choice &@f consider the construction of the resulting envi-
ronments. Suppodé, € U = {01, -- -, 0,} with:

{A](A4,01) € Tr(ty)} = {A11,-++, A1z, } = D1

[A(A6,) € Tr(te)} = {Apr -, Avs,} = Dy

Set{Al, BN Az} = {U?:l @j | (@1, sy @p) €Dy x---X Dp}. Let{A’l, S ,A;/}
be the corresponding set of type environments construotétisame way frorty, €
U, with U, C U, witnessing the completenessisf As U, C U,, for eachj € [1, 2]
there exists an € [1, 2] such thatd; C A;.

We show, by induction on purely applicative termghat for everyt, 0 and 4, if
(4,0) € Tr(t) then for somed’ C A, (A',0) € T®'(t). The base case is obvious.
Write 7 = AS1 — -+ = AS, — 0. Suppos€{¢ : 7} U, Ujey, 135, 0) €
Tr(£t1---t,). By definition, for eachi € [1,n] there exists{§;; | j € I;} such
that /\jezi 0;; < ASi, and for eachi and j, (I;;,0,;) € Tr(¢). By the induc-
tion hypothesis, for each € [1,n] andj € I;, there existslj; C Ij; such that
(I}, 0:) € TF'(t;). Then, by definition off?*, for eachi, there existsl;” C I;
such that\ ;- 0;; < A Si. Thus({¢ : 7} UUL, Ujep- I75,60) € T (Et1 -+ t).
We note tha{¢ : 7} UU;Ly Ujer- I € {€: 7 UULy Ujer, I as required.

As an immediate consequence, we have soundness of the sgdioni for each
(F : 0)in I', and for eaci{ A, 0) € Tr(R(F)), there exist§ A, 0) € TP (R(F))
such thatd\’ C A.

H Examples

H.1 Intercept

For this example, we take a network-oriented OCaml progiihis program reads an
arbitrary amount of data from a network socket into a queukdsthen responsible for
forwarding the data on to another socket. The full programtzafound at [21] and an
abstracted form in ML-like syntax as found elsewhere in thpgy follows.

let rec gy n=for i in1ltondowite(y) ; done ; close(y)
let rec f xy n=1if bthen read(x) ; f(x,y,n+l)

el se close(x) ; g(y,n)
let t open_out "socket2" in

let s open_in "socketl1l" in f(s,t,0)

We can then construct a RUL program via lambda-lifting an& @@nsformation.



Model Checking Liveness Properties of Higher-Order Fumzti Programs 39

S =new C1
C1 x =new” (C2x)
C2xy=FxyZero*
Frynk = if+(aCGead  (F zy (Succn) k)) (aCtlose  (Gyn k)
Gyn kE=n (accwrite y) (aCQ:lose yk)
Zero fr=x

Sucen fx=f(nfzx)

For this program it would be useful to confirm that if the “indcket stops trans-
mitting data then the “out” socket is eventually closedd{close;, = AF closeyy).
Given that this example property is slightly more compkchtrequiring interplaye-
tweerresources, a slightly altered transformation to HORS isired that differentiates
between operations on the two resources, while also untondlly instantiating both
resources. Given this fixed number of resources it is passibéxtend the alphabet in
this way:

S — Newr C1
C1 xz — Neww (C2 x)
C2xy — FaxyZeroend
Fxynk — br (Read x (F xy (Succn)k))
(Closer x (Gynk)
Gynk — n(Writey) (Closew y k)
ITxy—2xy
Kzxy—vy
Newr k — newr (k1)
Neww k — neww (k1)
Closer x k — x closer k
Closew x k — x closew k
Readx k — xread k
Write x k — x write k
Zerofr — x
Sucen fxr— f(nfx)

The property may then be specified as the AMT= (X, {qo,qs},9.q0,{q0 —
0,qs — 1}). d is defined below (wherg € {qo, ¢; } and* € {newr, neww, read, write}):

(g,%) — (1,9)

(g,br) = (1,9) A (2,9)
(qu 610567“) = (L Qf) A (L QO)
(qo, closew) — (1, qo)
(g, closer) — (1,qy)
(g, closew) —t

We can see that théG part of the property is handled by thgy, closer)” transi-
tion, which spawns an additional copy of the automaton tekligat A F' closew holds

from this state.
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H.2 Boolean

This example was chosen to demonstrate that model-cheokifigst-order boolean
programs can be performed using this method. We take astih@divllowing small C
function:

#i ncl ude <assert. h>
void foo(int x, int y, int z, int w)

{
do {
z = 0;

X =Y,
if(w {
X++;

z =1

}
} while (x!=y);
assert (z==0);
}

Through standard predicate abstraction, taking the pagglset{z = y, w # 0,2z =
0}, we obtain a boolean program:

decl x_eq_y;
decl w_neq_O;
decl z_eq_O;

void main() begin
X_eq.y := *;
w_neq_0 := *;
z_eq_0 := =;
| oop_start:
z_eq_O :
X_eq_y :
i f(w_neqg_0O
X_eq_y :
z_eq_O :
fi;
if(!x_eq_y) then
goto | oop_end;
fi;
goto |l oop_start;
| oop_end:
assert (z_eq_0);
end

Hn~=re

t hen
0;
1;

We can perform a literal translation to HORS by modellingdtege as a number of
formal parameters passed from one line in the boolean pmo@varule in the HORS)
to the next:
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S — L1_1
L1_1 — br(L1.-2 True) (L1_2 False)
L1 2x — br(L1.8x True)(L1_3 x False)
L1_8xy— br(L2xy True) (L2 xy False)
L2xzyz— L3 xy True
L3xyz— L4 Trueyz
Lizyz—y(Lszyz)(L7xyz)
L5xzyz— L6 Falsey z
L6zyz— L7xy True
L7zyz = x(L9zxyz) (L8xyz)
L8xyz— Li0xyz
LYxyz— L2xyz
L10xyz — z end fail
Truexy — x
Falsexy — y

Here thefail terminal signals failure of the assertion, and thereforeowly need
to check that it is never encountered. This can be done ubiadrivial automaton

A= <25 {q0}7 {(q07 bT) = qo qo, (q07 end) = t}7 q0, {QO = 0}>
H.3 Imperative

This example allows us to show a different approach to vierifghe following small
imperative program used as running example by Gatak.[15].

while(*) {
X = 1;
n .= x;
whi | e(n>0) {

n:=n- 1;

}
X = 0;

}

while(1) {}

Using Church numerals as in Section H.1 we can modehthiée loop and obtain
a fairly direct translation:

S — br EnterLoop end
EnterLoop — set_x_one (IncCounter Zero (Loop end))
IncCounter n f — br (RunLoop n f) (IncCounter (Succn) f)
RunLoop n f — n decr (set_z_zero f)
Zerofr —x
Sucenfx— f(nfx)
Loop k — loop (Loop k)
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The suggested propertyjs= AG[(z = 1) = AF(x = 0)],aCTL formulathat we
can check using the automatdn= (X, {qo, ¢r, 9c }, 9, 90, {q0 — 0, ¢, — 1,q. — 0}).
¢ is defined below (where € {qo, g }):

(qo, set_x_one) — qqo
(qo, set_z_zero) — q
(g0, end) —

(qo, decr) — g,
(g;:br) = qq
(qr, set_z_one) — ¢,
(QTa decr) = qr

)

(qe, loop) + g



