
Model Checking Liveness Properties of Higher-Order
Functional Programs

M. M. Lester R. P. Neatherway C.-H. L. Ong S. J. Ramsay

Oxford University Computing Laboratory

Abstract. Recent advances in the model checking of recursion schemes have
opened the prospect of a model checking approach to the verification of higher-
order functional programs. We formulate the Resource UsageVerification Prob-
lem in a general (liveness) setting, where good behaviours are specified by al-
ternating parity (word) automata; and we give a sound and complete decision
procedure by reduction to the problem of model checkinghigher-order recursion
schemes(HORS) against alternating parity tree automata. Extending Kobayashi’s
type-inference approach, we present an efficient algorithmfor deciding a restric-
tion of the model checking problem in which properties are expressed byalter-
nating weak tree automata(and hence all CTL formulas). We have constructed
a model checker, THORS, that implements our algorithm and a number of opti-
misations. Despite the hugely challenging worst-case timecomplexity, THORS

performs remarkably well on small examples, even up to order5. To our knowl-
edge, this is the first model checker for HORS which allows forthe specification
of tree automata with a non-trivial acceptance condition, including all CTL prop-
erties.

1 Introduction

In the past decade, huge strides have been made in the development of finite-state and
pushdown model checking for the verification of computer programs. Though highly
effective when applied to first-order imperative programs such as C, these techniques
are much less useful for higher-order functional programs.In contrast, the two standard
approaches to the verification of higher-order programs aretype-based program analy-
sison the one hand, andtheorem-provinganddependent typeson the other. The former
is sound, but often imprecise; the latter typically requires human intervention.

In a POPL’09 paper [1], Kobayashi introduced a novel approach to the verifica-
tion of higher-order functional programs by reduction to a model checking problem for
higher-order recursion schemes. A form of simply-typed lambda calculus with recur-
sion and (uninterpreted) first-order symbols,higher-order recursion schemes(HORS)
are generators of infinite trees. Building on recent advances in the model checking prob-
lem for HORS [2], Kobayashi developed a type-based algorithm which is sound and
complete for model checking HORS against trivial automata (i.e. Büchi tree automata
with a trivial acceptance condition). This method has been successfully applied to the
resource safety verification problem [3] for RUL, a simply-typed functional language
with dynamic resource creation and access primitives. There are transforms which,

2 Lester, Neatherway, Ong and Ramsay

given a functional programM and a correctness propertyϕ (e.g. an open file is even-
tually closed, and not read from or written to after it is closed), reduce the verification
problem to one of deciding whether a trivial automatonAϕ accepts the tree generated
by a recursion schemeRM .

In this paper, we formulate the verification problem ofresource usage in accord with
ϕ, whereϕ is a specification of good resource-usage behaviour represented as an alter-
nating parity automaton (equivalently a linear-time modalmu-calculus formula). We
show that the problem can be reduced to the problem of model checking HORS against
alternating parity tree automata. We illustrate the approach using liveness specifications
for resource usage and discuss appropriate fairness assumptions.

After formulating the general problem and its solution, we turn our attention to
a particular restriction which we believe will be relevant to practice. We develop an
efficient algorithm for model checking HORS againstalternating weak tree automata
(AWT), which are an automata-theoretic characterisation of the alternation-free modal
mu-calculus(AFMC). AFMC maintains a delicate balance between expressivity and
algorithmics: it embeds all of CTL whilst remaining amenable to efficient methods
(AFMC can be evaluated in time linear in the structure) [4, 5].

Given an AWTA and a HORSG, we consider theacceptance problemof whetherA
accepts the tree defined byG, denoted[[G]]. By adapting Kobayashi and Ong’s result [6],
given an AWTA, we construct an intersection type systemλA

∧ such thatA accepts[[G]]
if, and only if, Éloı̈se has a winning strategy in a derivedweakBüchi gameG(G,λA

∧).
Intuitively Éloı̈se aims to prove that the HORSG is well-typed inλA

∧ , and Abelard
aims to disprove it. We present a semi-algorithm that is guaranteed to terminate in the
case of a YES instance, and show how it can be used to form a decision procedure.
We also discuss specialisations of the algorithm for less expressive automata, including
deterministic AWT and automata with trivial and co-trivialacceptance conditions.

Because of the inherent complexity of the model checking problem (Theorem 5),
building and interrogating a representation of the game na¨ıvely would be a hopeless
task. Fortunately, to determine a solution, we need only consider the reachable part of
the underlying graph, which corresponds to those types thatdescribe the computation
of run-trees ofA over[[G]]. The algorithm consists of a two stage loop. In the first stage,
the recursion schemeG is partially evaluated in order to extract those computationally
relevant type bindings. If there is no run-tree ofA over [[G]], then stage 1 will fail and
the algorithm concludes that[[G]] is not accepted byA. In the second stage aweakBüchi
game is built from the bindings collected in the first, ifÉloı̈se has a winning strategy
in this game then the algorithm concludes that there is an accepting run-tree ofA over
[[G]]. We present a linear-time algorithm for solving such games.

We have implemented the algorithm in a prototype tool, called THORS (Types for
Higher-Order Recursion Schemes). We have evaluated the tool on a number of exam-
ples, some derived from programs, others from the literature. The experiments we have
performed show that the model checker is remarkably fast, despite then-EXPTIME
complete worst-case time-complexity.

Related work.Kobayashi and Ong [6] have shown that, given an alternating parity tree
automatonA, there is a type theoryTA that characterises it, in the sense that the tree[[G]]
generated by an arbitrary HORSG is accepted byA if, and only if,Éloı̈se has a winning

Model Checking Liveness Properties of Higher-Order Functional Programs 3

strategy in a certain type-inference parity game. Their result provides the theoretical
basis of our algorithm. On the implementation side, the precursor of our work is TReCS,
Kobayashi’s tool [7] that checks if a given deterministic trivial automaton accepts the
tree generated by a HORS. Stage 1 of our algorithm builds on and extends Kobayashi’s
method of extracting computationally relevant type bindings from configuration graphs,
which are representations of runs of the automaton on partial evaluation of the HORS. In
[8] a new algorithm for trivial automata model checking of HORS is given, which runs
in time linear in the size of the HORS, assuming that the automata and the largest order
and arity of functions are fixed. To our knowledge, THORS is the first implementation
of non-trivial automata (more generally, AWT / CTL) model checking of HORS.

Outline. The basic notions such as HORS, AWT and the associated paritygames are
defined in Section 2. Section 3 introduces the resource liveness verification problem.
Section 4 introduces the intersection type system that characterises AWT, the two-stage
model checking algorithms, and presents relevant complexity results. In Section 5, we
briefly discuss correctness, complexity and optimisation techniques. The implementa-
tion and experimental results are presented in Section 6.

2 Technical preliminaries

Higher-order recursion schemes Kinds1 are expressions defined by the grammar
A ::= o | A → B. We define theorder of a kind:ord(o) := 0 andord(A → B) :=
max(ord(A) + 1, ord(B)). Assume a countably infinite setVar of kinded variables.
A higher-order recursion schemeis a tupleG = 〈Σ,N ,R, S〉 where (i)Σ is aranked
alphabeti.e. eachterminalf ∈ Σ has an arityar(f) ≥ 0; (ii) N is a set of kindednon-
terminals; S ∈ N is a distinguishedstart symbolof kind o; and (iii) R is a finite set of
rewrite rules of the formF x1 · · · xn → e, whereF : A1 → · · · → An → o and each
xi : Ai ∈ Var , ande : o is an applicative term generated fromΣ ∪N ∪ {x1, · · · , xn};
we defineR(F) := λx1 · · ·xn.e. Theorder of a recursion scheme is the highest order
(of the kind) of its non-terminals. We usedeterministicrecursion schemes (i.e. one rule
for each non-terminal) to define possibly-infinite trees.

Example 1 (An order-2 recursion schemeG1). Take the ranked alphabetΣ of symbols
a, b, c of arities2, 1, 0 respectively and the setN = {S : o, F : (o → o) → o,G : (o →
o) → (o → o) → o → o} of non-terminals. Consider the order-2 recursion schemeG1

with rewrite rules:
a

mmm
m QQQ

Q

b a
ooo

o OOO
O

c b a

b ...
c

S → F b
F x → a (x c) (F (Gbx))

Gxy z → x (y z)

Unfolding fromS, we have

S → F b → a (b c) (F (Gb b)) → a (b c) (a (Gb b c) (F (Gb (Gb b)))) → · · ·

1 We use the wordkind here instead of the more usualtypebecause the latter is reserved for
intersection type, to be introduced in the sequel.

4 Lester, Neatherway, Ong and Ramsay

thus generating the infinite terma (b c) (a (b (b c)) (· · ·)). The tree generated byG1,
[[G1]], is the abstract syntax tree of the infinite term, as shown above.

Formally the rewrite relation→G is defined by induction over the following rules:

Fx1 · · ·xn → e is aR-rule
Ft1 · · · tn →G e[t1/x1, · · · , tn/xn]

t →G t′

s t →G s t′
t →G t′

t s →G t′ s

We write→∗
G for the reflexive, transitive closure of→G.

Henceforth fix a ranked alphabetΣ; setm := max{ar(f) | f ∈ Σ}. A Σ-labelled
tree is a partial functiont from {1, · · · ,m}∗ to Σ such thatdom(t) is prefix-closed.
A (possibly infinite) sequenceπ over{1, · · · ,m} is apathof t if every finite prefix of
π is in dom(t). Given a termt, we define a (finite) treet⊥ by: (F t1 · · · tn)

⊥
:= ⊥

and(f t1 · · · tn)
⊥ := f t1

⊥ · · · tn⊥ (wheren ≥ 0). E.g. (f (F a) b)⊥ = f ⊥ b. Let
⊑ be the least partial order onΣ ∪ {⊥} defined by∀a ∈ Σ.⊥ ⊑ a. We extend⊑ to
a partial order on trees by:t ⊑ s iff ∀w ∈ dom(t).(w ∈ dom(s) ∧ t(w) ⊑ s(w)).
E.g.⊥ ⊑ f ⊥ ⊥ ⊑ f ⊥ b ⊑ f a b. For a directed setT of trees, we write

⊔
T for the

least upper bound of elements ofT with respect to⊑. We define thetree generated by
G, or thevalue treeof G, [[G]] :=

⊔
{t⊥ | S →∗

G t}. By construction,[[G]] is a possibly
infinite, ranked (Σ ∪ {⊥})-labelled tree.2

Alternating parity tree automata (APT) Given a finite setX , the setB+(X) of posi-
tive Boolean formulasoverX is defined by the grammar:B+(X) ∋ θ ::= t | f | x | θ∧
θ | θ ∨ θ, wherex ranges overX . We say that a subsetY of X satisfiesθ if as-
signing true to elements inY and false to elements inX \ Y makesθ true. An al-
ternating parity tree automaton(or APT for short) overΣ-labelled trees is a tuple
A = 〈Σ,Q, δ, qI , Ω〉 where (i)Σ is a ranked alphabet; letm be the largest arity of
the terminal symbols; (ii)Q is a finite set of states, andqI ∈ Q is the initial state;
(iii) δ : Q × Σ −→ B+({1, · · · ,m} × Q) is the transition function where, for each
f ∈ Σ andq ∈ Q, δ(q, f) ∈ B+({1, · · · , ar(f)} ×Q); (iv) Ω : Q → {0, · · · ,m− 1}
is the priority function. We say that an APT isdeterministicjust if its transition func-
tion δ is deterministic i.e. for eachq ∈ Q andf ∈ Σ, δ(q, f) is t or f or has the shape∧

ar(f)
i=1 (i, qi); it is conjunctivejust if δ maps every pair to a disjunction-free formula.

For any pair(q, f), the RHS ofδ can be thought of as a set of satisfying as-
signments (explicitly so through conversion to DNF), each of which are a potential
continuation of the run-tree. A satisfying assignment consists of a set of pairs(i, q′)
(i ∈ {1, · · · , ar(f)}, q′ ∈ Q) where each such pair corresponds to sending a copy of
the automaton in stateq′ to child i of the current position in the tree. In Example 2
below, we can see thatA1 has a single satisfying assignment for each transition and is
therefore deterministic.

An alternating B̈uchi tree automaton(ABT), A = 〈Σ,Q, δ, qI , Ω〉, is an APT with
at most two priorities (i.e.Ω : Q → {0, 1}); states with priority 0 (and 1) are called
accepting(andrejectingrespectively). Analternating weak tree automaton(AWT) A is
an ABT that satisfiesweakness: there is a partial order≤ over a partition{Q1, · · · , Qn}

2 W.l.o.g. (see e.g. [6, Remark 2.1]) we consider HORSG whose tree[[G]] does not contain⊥.

Model Checking Liveness Properties of Higher-Order Functional Programs 5

of Q such that (i) for eachi, either every state inQi is accepting, or none is; (ii) for
everyq ∈ Qi andq′ ∈ Qj for which q′ occurs inδ(q, f), for somef ∈ Σ, we have
Qj ≤ Qi. It follows that every infinite path of anA-run ultimately gets trapped within
someQj . A deterministic weak tree automaton(DWT) is an AWT that is deterministic.

A trivial automatonis an APT that has only one priority, namely, 0 (equivalently
[9, 1], it is a non-deterministic Büchi automaton all of whose states are accepting). It
follows from the definition that a tree is accepted by a trivial automaton just if there is a
run-tree over it (the adjective “trivial” refers to the absence of any acceptance condition
on infinite paths of the run-tree). We define aco-trivial automatonto be an APT all of
whose states have priority 1. Thus a tree is accepted by a co-trivial automaton if (and
only if) there is a run-tree that has no infinite paths.

Example 2 (A DWTA1). Take the ranked alphabetΣ of Example 1;[[G1]] is accepted
by A1 = 〈Σ, {q0, q1}, δ, q0, {q0 7→ 0, q1 7→ 1}〉 with {q1} ≤ {q0}, whereδ is as
follows (omitting all thatδ maps tof): let q ∈ {q0, q1}

(q0, a) 7→ (1, q0) ∧ (2, q0), (q, b) 7→ (1, q1), (q, c) 7→ t.

ThusA1 accepts aΣ-labelled treet just if in every path, ifb occurs, thenb occurs
until c occurs. Note thatA1 is actually a DWT. Becauseb andc have arities 1 and 0
respectively, the property defined byA1 can be described by the CTL formulaAG (b →
A(b U c)).

a, q0
nn QQ

b, q0 a, q0
oo OO

c, q1 b, q0 a, q0

b, q1 ...
c, q1

A run-treeof an APTA over aΣ-labelled tree
t is a (dom(t) × Q)-labelled (unranked) treer (see
right for the run-tree ofA1 over [[G1]]) satisfying:
(i) ǫ ∈ dom(r) and r(ǫ) = (ǫ, qI); (ii) for every
β ∈ dom(r) with r(β) = (α, q), there is a (possibly
empty) setS that satisfiesδ(q, t(α)); and for each
(i, q′) ∈ S, there is somej such thatβ j ∈ dom(r)
andr(β j) = (α i, q′).

Let π = π1 π2 · · · be an infinite path inr; for eachi ≥ 0, let the state label of
the nodeπ1 · · ·πi beqni

whereqn0
= qI . We say thatπ satisfies theparity condition

if the least priority that occurs infinitely often inΩ(qn0
)Ω(qn1

)Ω(qn2
) · · · is even. A

run-treer is acceptingif every infinite path in it satisfies the parity condition. Wesay
that a treet is acceptedbyA just if there is an accepting run-tree ofA overt.

Ong [2] showed that there is a procedure that, given a recursion schemeG and an
APT A, decides whetherA accepts[[G]].

Theorem 1 (Ong [2]).LetG be a recursion scheme of ordern, andA be an APT. The
problem of checking whetherA accepts[[G]] is n-EXPTIME-complete.

The correspondence between parity games and modal mu-calculus (equivalently
APT [10]) specialises to one between weak Büchi games and alternation-free mu-
calculus (equivalently AWT [11]). (For parity games and alternation-free mu-calculus,
see Appendix A.) Recall that aBüchi gameis just a parity game〈VA, VE , v0, E,Ω〉
that has at most two priorities, say3, 0 and 1; priority-0 nodes are calledaccepting, and

3 In a weak Büchi game, every path has at most one infinitely-occurring priority. Hence it does
not matter whether the range ofΩ is {0, 1} or {1, 2}. (We choose the former.)

6 Lester, Neatherway, Ong and Ramsay

priority-1 nodes are calledrejecting. A Büchi gameis said to beweakif there is a par-
tial order≤ over a partition{V1, · · · , Vn} of the node-set such that (i) for eachi, either
every node inVi is accepting, or none is; and (ii) for each(u, v) ∈ E, if u ∈ Vi and
v ∈ Vj thenVj ≤ Vi. It follows that in a weak Büchi game, every maximal play is
eventually “trapped” inVi for somei, and it is winning (forÉloı̈se) if, and only if,Vi is
accepting. (Henceforth we assume that parity games are finite.)

3 Verifying resource usage liveness properties

We approach the verification of higher-order functional programs by reduction to the
model checking of HORS. Take the verification problem: does the functional program
P satisfy temporal specificationϕ?

1. The programP is first transformed to a recursion schemeP̃ that generates a tree
[[P̃]] representing all possible event sequences in the computation ofP . The prop-
ertyϕ is also suitably transformed to a propertyϕ̃ of infinite trees which may be a
tree automaton or another temporal formula.

2. The tree[[P̃]] is then model checked against the transformed propertyϕ̃, such that
P satisfiesϕ if, and only if, [[P̃]] satisfiesϕ̃.

This method isfully automatic, soundandcompletefor the Resource Safety Verification
Problem as studied by Igarashi and Kobayashi [12, 1].

The goal of Igarashi and Kobayashi’s research in resource safety verification [12] is
to check statically if the manner in which a given program accesses resources (which
model stateful objects such as files, memory cells and locks)satisfies a given safety
propertyϕ. Our aim here is to extendϕ to all linear-time modal mu-calculus properties,
including both safety and liveness properties. Consider a simple functional program
that opens a filefoo, reads it repeatedly until the end-of-file character is read, and then
closes it. An abstraction of such a program is presented in anML-like syntax as follows.

let rec g x = if b then close(x)
else read(x) ; g(x) in

let s = open_in "foo" in g(s)

Does the program access the filefoo in accord with a correctness specificationϕ =
“An opened file is eventually closed, after which it is not read”? The propertyϕ may
be described as a regular expression (e.g.r

∗
c) or an automaton. Are such verification

questions decidable?
Igarashi and Kobayashi formalised the problem for a simply-typed call-by-value

lambda-calculus with recursion and primitives for dynamically creating and allocat-
ing resources. Following [1], we consider a call-by-name version (for consistency with
HORS) which we call RUL.

Resource usage language, RULWe first fix a finite setQI of resource sorts and a
setL of resource access primitives. A RULprogramD is a set of function definitions
{F1 x1 = e1, · · · , Fn xn = en}, where eachFi is a defined function symbol, andei is
an expression which is defined by the grammar

e ::= ⋆ | x | F | e1 e2 | if∗ e1 e2 | newq e | acca x e

Model Checking Liveness Properties of Higher-Order Functional Programs 7

whereq anda range overQI andL respectively. The program contains exactly one
function definition of the formS = e, whereS, a distinguished defined function sym-
bol, is the “main” function; by conventionF1 = S.

We consider only well-typed programs. The set of types is defined by the grammar
τ ::= R | unit | τ1 → τ2, whereR is the type of resources andunit is the type of the
unit value⋆. A type environment,Γ , is a finite map from variables (including function
namesFi) to types. Valid type judgementsΓ ⊢ e : τ are defined by induction over the
following set of rules.

Γ ⊢ ⋆ : unit Γ, x : τ ⊢ x : τ
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e1 : τ1

Γ ⊢ e1 e2 : τ

Γ ⊢ e1 : unit Γ ⊢ e2 : unit
Γ ⊢ if∗ e1 e2 : unit

Γ ⊢ e : R → unit
Γ ⊢ newq e : unit

Γ ⊢ e1 : R Γ ⊢ e2 : unit
Γ ⊢ acca e1 e2 : unit

A programD is well-typed underΓ just if Γ, xi : τi ⊢ ei : unit is valid for eachi,
whereΓ = {F1 : x1 → unit , · · · , Fn : xn → unit}, xi : τi abbreviates the set
{xi1 : τi1, · · · , xiri : τiri}, andxi → unit meansxi1 → · · · → xiri → unit .

Example 3 (RUL programD1). The following program is obtained from the preceding
ML program by lambda-lifting followed by a standard CPS transformation.

D1 :

{
S = newreadonly (G ⋆)

Gk x = if∗ (accclose x k) (accread x (Gk x))

Operational semantics.The small-step semantics of RUL is given by a binary relation
→ between pairs of the form(R, e) whereR is a set of resource names that have been
created thus far in the computation (which is not garbage-collected). We define→ by a
set of rewrite rules as follows. Note that→ is non-deterministic.

(R, F e) → (R, e′[e/y]) if F y = e′ is aD-equation
(R, if∗ e1 e2) → (R, ei) i = 1, 2
(R, newq e) → (R ∪ {x}, e x) if x 6∈ R

(R ∪ {x}, acca x e) → (R ∪ {x}, e)

Example 4.A reduction sequence ofD1, and its tree of access sequence (definition to
follow).

(∅, S)
→ (∅, newreadonly (G ⋆))
→ ({x}, G ⋆ x)
→ ({x}, if∗ (accclose x ⋆) (accread x (G ⋆ x)))
→ ({x}, accread x (G ⋆ x))
→ ({x}, G ⋆ x)
→ · · ·

νro

br if

ss NNN

c r

⋆ br if
ppp KK

c r

⋆ ...

Reasoning about resource usage is difficult because a program D may create in-
finitely many resources. To verify thatD uses resources correctly, we need to do so
resource-wisei.e. check thatD useseverycopy of everysort of resource (that has been
created) in accord with the desired property.

8 Lester, Neatherway, Ong and Ramsay

Example 5 (ProgramD2). D2 creates infinitely many copies of “readonly” resource.

D2 :

{
S = newreadonly (G ⋆)

Gk x = if∗ (accclose x (newreadonly (G ⋆))) (accread x (Gk x))

It is possible to describe the correctness property either as a temporal logic formula
or an automaton. Here we choose the latter. Aparity resource automatonW is an
alternating parity (word) automaton〈Q,L, δ,QI , Ω〉, whereQ is a set of states,QI ⊆
Q is a set of initial states (we deliberately conflate initial states withresource sorts
introduced earlier),L is a set of resource access primitives,δ : Q × L → 22

Q

is a
transition4 function,q0 ∈ QI is an initial state, andΩ : Q → {0, · · · , p} is a priority
function.

Definition 1. Fix a parity resource automatonW = 〈Q,L, δ,QI, Ω〉. Let x be a re-
source. Aconfiguration of resourcex (or simply x-configuration) is a pair, written
(H, e)x, wheree is an expression andH = {x1 : q1, · · · , xn : qn} is a finite function
that maps a resourcexi to its stateqi ∈ {qun}∪Q, with qun meaning that the monitoring

of resourcex has not yet begun. The binary relation
d

−→D,W,x overx-configurations,
whered ∈ {1, 2, ǫ}∪Q is defined by induction over the following rules. We shall omit

the subscripts from
d

−→D,W,x whenever they can readily be determined from the con-
text. Letx = xq0 be a resource of sortq0 ∈ QI . We defineTx, the transition graph of
x-configurations, as follows.

(H, F e)x
ǫ

−→ (H, e′[e/y])x whereF y = e′ is aD-equation

(H, if∗ e1 e2)x
i

−→ (H, ei)x i = 1, 2

(H, newq0 e)x
2

−→ (H ∪ {x : q0}, e x)x x 6∈ dom(H)

(H, newq e)x
1

−→ (H ∪ {y : q}, e y)x y 6∈ dom(H)

(H ∪ {x : q}, newq′ e)x
1

−→ (H ∪ {x : q, y : q′}, e y)x y 6∈ dom(H)

(H ∪ {x : q}, acca x e)x
q′

−→ (H ∪ {x : q′}, e)x if q′ ∈ X ∈ δ(q, a), someX

(H ∪ {y : q}, acca y e)x
ǫ

−→ (H ∪ {y : q}, e)x

(H, ⋆)x
ǫ

−→ (H, ⋆)x

In the fourth clause above,q may or may not beq0; in the penultimate clause, the
state ofy is unchanged. Thestateof (H, e)x is defined asstate(H, e)x := H(x) if
x ∈ dom(H), andqun otherwise. Note that if a configuration can do aǫ-transition, its
state is preserved by the transition, which is the unique transition from the configuration.

A parity gameG(D,W). LetD be a RUL program andW a parity resource automaton.
We construct a (parity) gameG(D,W) betweeńEloı̈se (Verifier) and Abelard (Refuter)
as follows.

- The initial position is the configuration set{(∅, S)x1
, · · · , (∅, S)xn

}, where eachxi

is a resource of sortqi with QI = {q1, · · · , qn}

4 The RHS of the transition function can be presented equivalently as a positive Boolean for-
mula. Thus, assumingδ(q, a) = {S1, · · · , Sl}, we can writeδ(q, a) as

∨
i

∧
q∈Si

(1, q).

Model Checking Liveness Properties of Higher-Order Functional Programs 9

- If the current position is a configuration setC, then Abelard is to move. He does so
by choosing some configurationc ∈ C to be the new position.

- If the current position is a configuration(H, e)x, thenÉloı̈se is to move. There are
two cases. Ife = acca x e′ andstate(H, e)x = q ∈ Q, thenÉloı̈se chooses some
T ∈ δ(q, a), and the new position is the set{(H ∪ {x : q′}, e′)x | q′ ∈ T }. In all

other cases, the new position is{c | (H, e)x
d

−→ c}.

Winning condition. If a player is unable to move at any position, then the other player
wins. Suppose an infinite playC0 c0 C1 · · · ensues, whereCi ranges over configuration-
sets, andci over configurations. Letstate(ci) = qi; if the least priority that occurs
infinitely often in the sequenceΩ(q0) Ω(q1) Ω(q2) · · · is even, theńEloı̈se wins; oth-
erwise Abelard wins. (We extend the priority mapΩ by mappingqun to the largest
priority.) We say thatD satisfiesW just if Éloı̈se wins the gameG(D,W).

Note that (i) if a play reaches a configuration of the shape(H ∪ {x : q}, acca x e)x
whereδ(q, a) = ∅ thenÉloı̈se loses as she is stuck; (ii) if a play reaches(H, ⋆)x with
stateq thenÉloı̈se wins ifΩ(q) is even.

Example 6.ConsiderWθ := 〈{qro, qc}, {r, c}, δ, {qro}, {(qro, θ), (qc, 0)}〉 with δ :
(qro, r) 7→ {{qro}}, (qro, c) 7→ {{qc}}. ThenD1 satisfies the resource (safety) au-
tomatonW0, but not the (liveness) automatonW1 because of the infinite path that al-
ways takes the right branch ofif∗. This path may be disregarded under suitable fairness
assumptions, on which more anon.

Transformation to recursion schemes.Following [1], we reduce the resource usage
verification problem to the APT model checking problem for HORS.

Definition 2. Given a pair(D,W) as before, we construct a HORSGD = 〈Σ,N ,R〉
and an APTAD,W such thatD satisfiesW if and only if [[GD]] is accepted byAD,W .
We defineGD := 〈Σ,N ,R〉 where

Σ := {a : 1 | a ∈ L} ∪ {br if : 2, brnew : 2, ⋆ : 0} ∪ {νq : 1 | q ∈ QI}
N := {F : (Γ (F))♯ | F ∈ dom(Γ)} ∪ {newq : (((o → o) → o → o) → o) → o | q ∈ QI}

∪ {acca | ((o → o) → o → o) → o → o | a ∈ L}
∪ {if∗ : o → o → o, I : (o → o) → o → o,K : (o → o) → o → o}

with Γ witnessing the well-typedness ofD; andR consisting of the following rules:

if∗x y → br if x y F x → e for eachD-equationF x = e
I x k → x k newq k → brnew (νq (k I)) (kK) for eachq ∈ QI

K xk → k acca x k → xa k for eacha ∈ L

where(−)♯ is a translation of types of RUL to kinds defined by

R♯ = (o → o) → o → o unit ♯ = o (τ1 → τ2)
♯ = τ ♯1 → τ ♯2

We define APTAD,W := 〈Σ,Q′, δ′, qun, Ω
′〉 whereΣ is as before,Q′ = Q ∪ {qun},

Ω′ mapsqun to 0, andΩ′ ↾ Q := Ω; andδ′ is defined as follows:

(q, br if) 7→ (1, q) ∧ (2, q) (q, brnew) 7→ (1, q) ∧ (2, q)

(q, νq
′

) 7→

{
(1, q′) if q = qun
t otherwise

(q, ⋆) 7→

{
t if Ω′(q) is even
f otherwise

(q, a) 7→
∨

1≤i≤k

∧
q′∈Qi

(1, q′) if q ∈ Q andδ(q, a) = {Q1, · · · , Qk}

10 Lester, Neatherway, Ong and Ramsay

Theorem 2 (Reduction).LetD be a RUL program andW a parity resource automa-
ton. ThenD satisfiesW if and only if[[GD]] is accepted by the APTAD,W .

See Appendix B for a proof. We develop a non-standard notion of weak bisimula-
tion between labelled transition systems (as game graphs),and prove (Theorem 7) that
Éloı̈se winning strategies of the parity game over one graphdetermine théEloı̈se win-
ning strategies of the parity game over the other graph. Theorem 2 is then a corollary.

Liveness and fairness Liveness properties (under certain conditions, some “good”
configurations are eventually reachable) are harder to check than safety properties (un-
der certain conditions, no “bad” configuration is ever reachable). In practice, however,
liveness is as important as safety.Fairness(one version says: under certain conditions,
some events must occur infinitely often) is a property often associated with liveness
checking. It is known that liveness of a system can be reducedto termination of a mod-
ified system with fairness assumptions. Another use of fairness is as anassumptionof
a liveness property. For example in the dining philosophers’ problem, a path that ig-
nores a philosopher’s request indefinitely is unfair, and itcan violate a desired liveness
property. When constructing abstract models of programs, conditionals are often trans-
formed to non-deterministic branches; a common fairness assumption is to deem an
(infinite) pathunfair if it always takes the left branch, or always takes the right branch.

Example 7 (Running example:GD2
and CWTA2). See E.g. 5 (forD2) and Def. 2.

brnew
tt GG

νro �

br if

rrr XXXXXXXXXX

c r

brnew
tt JJ

br if

lllll GG

νro � c r

br if

�� JJJ
brnew

tt GG
br if

xx
??

c r νro � c r

The tree[[GD2
]] is shown on the right. The

box� represents possible access sequences
obtained by keeping track of different oc-
currences of the resource. We say an ac-
cess sequence isunfair if, from some point
onwards, itonly takes the right branch of
br if (intuitively because it corresponds to
reading an infinite “readonly” resource).
Setϕ2 to be the CTL formula

AG (r ⇒ A ((r ∨ br if)U c)).

When restricted tofair5 paths,[[GD2
]] satisfiesϕ2. We encodeϕ2 together with the fair-

ness assumption in theconjunctiveweak tree automaton (CWT)A2 with the following
transition function.

q0, brnew 7→ (1, q0) ∧ (2, q0)
q0, ν

ro 7→ (1, qr) ∧ (1, q0)
q0, br if 7→ (1, q0) ∧ (2, q0)
q0, r 7→ (1, q0)
q0, c 7→ (1, q0)
q0, ⋆ 7→ t

qr, br if 7→ (1, ql) ∧ (2, qr)
qr, r 7→ (1, qr)
qr, c 7→ t

qr, ⋆ 7→ t

ql, r 7→ (1, ql)
ql, br if 7→ (1, ql) ∧ (2, ql)
ql, c 7→ t

ql, ⋆ 7→ t

5 Fairness assumptions can take various (not necessarily equivalent) forms. Alternatively we can
say that a path isfair if it satisfies thecompassion constraint{(r, c)} in the sense of Pnueli
[13] i.e. if r occurs infinitely often, so doesc.

Model Checking Liveness Properties of Higher-Order Functional Programs 11

The stateqr (respectivelyql) signals a node reachable by a path that, from some point
onwards,onlytakes (respectively, doesnotonly take) the right branch ofbr if . Weakness
is given by{q0, qr} (accepting)> {ql} (rejecting).

Example 8.Using the same terminals as the preceding example, considerthe CTL for-
mulaϕ3 := AG (νro ⇒ EX(EX c)). Intuitively ϕ3 says that the input program pro-
cesses empty files (“readonly” resource) correctly. E.g.[[GD2

]] satisfiesϕ3. We can en-
codeϕ3 in the following non-conjunctive AWTA3 with a trivial acceptance condition.

qm, brnew 7→ (1, qm) ∧ (2, qm) qm, νro 7→ (1, qm) ∧ (1, q0) qm, r 7→ (1, qm)
qm, c 7→ (1, qm) qm, br if 7→ (1, qm) ∧ (2, qm) qm, ⋆ 7→ t

q0, br if 7→ (1, q1) ∨ (2, q1) q1, c 7→ t

4 AWT model-checking by type inference

An intersection type system for AWT Fix an AWTA = 〈Σ,Q, δ, qI , Ω〉. We con-
struct an intersection type systemλA

∧ parameterised byA and introduce a game-playing
notion oftypabilityfor recursion schemes. The type system characterises the automaton
A in that a recursion schemeG is typable inλA

∧ if, and only if, [[G]] is accepted byA.
Let q ∈ Q. We define

Types θ ::= q | τ → θ
Conjunctive Types τ ::=

∧
{θ1, · · · , θk} (k ≥ 0)

Each type can be written uniquely asθ = τ1 → · · · → τn → q for somen ≥ 0; we call
q thestateof θ, writtenstate(θ). We write

∧k
i=1 θi for

∧
{θ1, · · · , θk}, and⊤ for

∧
∅.

Given a priority mapΩ : Q → N onQ, we extend it to all types byΩ(τ → θ) := Ω(θ).
We introduce a notion ofwell-kindednessof type. We define the relationsτ ::ct A and
θ ::A, which should be read “τ is a conjunctive type of kindA” and “θ is a type of kind
A” respectively, by induction over the following rules:

qi :: o

τ ::ct A θ :: B

τ → θ :: A → B

θi :: A for eachi ∈ {1, · · · , k}
∧k

i=1 θi ::ct A

Note that there are only finitely many well-kinded types of each kind.
Intuitively, a termλx.s of type(q1∧q2) → q is a function that takes a tree-argument

t which can be accepted from the statesq1 andq2, and returns a trees[t/x] which can
be accepted from stateq. By abuse of notation, we writeq ≤ q′ to meanq ∈ Qi and
q′ ∈ Qj andQi ≤ Qj . An AWT processing the trees[t/x] will read the root with state
q before reading the respective roots of subtrees with statesq1 andq2 respectively. It
follows thatq1 ≤ q andq2 ≤ q. This motivates a notion ofconsistencyof type which
is defined as follows. Eachq ∈ Q is consistent;

∧k
i=1 θi → θ is consistentjust if θ is

consistent, and for eachi, θi is consistent, andstate(θi) ≤ state(θ). We say that a type
θ is well-formedif (i) θ is well-kindedi.e.θ ::A for some kindA, and (ii)θ is consistent.

A type judgementof the systemλA
∧ has the formΓ ⊢ t : θ, wheret is aλ-term (we

treat non-terminals as variables), andΓ , called atype environment, is a set of bindings
of the formx : θ. Note thatΓ may contain multiple bindings of the same variable. We

12 Lester, Neatherway, Ong and Ramsay

θ is well-formed

x : θ ⊢ x : θ
(VAR)

{(i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfiesδ(q, f)

∅ ⊢ f :
∧k1

j=1
q1j → · · · →

∧kn

j=1
qnj → q

(TERM)

Γ0 ⊢ s :
∧k

i=1
θi → θ

Γi ⊢ t : θi for eachi ∈ {1, · · · , k}

Γ0 ∪ Γ1 ∪ · · · ∪ Γk ⊢ s t : θ
(APP)

Γ, x :
∧

i∈I θi ⊢ t : θ I ⊆ J
for j ∈ J \ I , state(θj) ≤ state(θ), andθj is well-formed

Γ ⊢ λx.t :
∧

j∈J θj → θ
(ABS)

Fig. 1. Rules defining valid judgements ofλA
∧ .

write Γ, x :
∧k

i=1 θi as a shorthand forΓ ∪ {x : θ1, · · · , x : θk} wherek ≥ 0 andx is
assumednot to occur inΓ . (Thus∆ = Γ, x :

∧
∅ means that∆ contains no bindings

of x.) Valid type judgements ofλA
∧ are defined by induction over the rules in Figure 4.

Remark 1.(i) (A BS) is the only place where weakening may be introduced. (ii) The
rule (APP) is not multiplicative: it is possible thatΓi ∩ Γj 6= ∅. Thus there is implicit
contraction in the type system.

Lemma 1. For every valid type judgementΓ ⊢ s : θ, (i) θ is well-formed, and (ii) for
each bindingx : θ′ in Γ , θ′ is well-formed, andstate(θ′) ≤ state(θ).

Typing a recursion scheme inλA
∧ . Following Kobayashi and Ong [6], we derive a weak

Büchi game from the type systemλA
∧ . Let G = 〈Σ,N ,R, S〉 be a recursion scheme.

We say that a bindingF : θ is G-consistentif F ∈ N and for some kindA, F : A and
θ ::A. A type environmentΓ isG-consistentif every binding in it isG-consistent.

Definition 3. (i) Given an AWTA = 〈Σ,Q, δ, qI , Ω〉 with a partial order≤ over
a partition{Q1, · · · , Qn} of Q, and a recursion schemeG = 〈Σ,N ,R, S〉, we define
the associated (weak Büchi) gameG(G,λA

∧) = 〈VA, VE , (S : qI), E,Ω′〉 where

VE := {(F : θ) | (F : θ) isG-consistent}
VA := {(Γ, q) | ∃ (F : θ) . Γ ⊢ R(F) : θ ∧ q = state(θ)}
E := {((F : θ), (Γ, state(θ))) | Γ ⊢ R(F) : θ} ∪ {((Γ, q), (F : θ)) | (F : θ) ∈ Γ}

(S : qI) ∈ VE is the initial node, and the priority functionΩ′ maps(F : θ) to
Ω(state(θ)), and(Γ, q) to Ω(q). The underlying directed graph has node-setVA ∪ VE

and edge-setE.
(ii) We say thatG is well-typedin λ

A
∧ if Éloı̈se has a winning strategy inG(G,λA

∧).

Lemma 2. The construction in Definition 3(i) yields a weak Büchi game.

Remark 2.The second componentq of anA-node(Γ, q) is introduced so that the re-
sultant edge relation is monotone w.r.t.≤.

Model Checking Liveness Properties of Higher-Order Functional Programs 13

The gameG(G,λA
∧) may be understood intuitively as follows. The game begins by

Abelard challenginǵEloı̈se to proveS : qI i.e. S has typeqI . As the opening move,
Éloı̈se produces an environmentΓ (precisely, a move(Γ, q), for someq) such that
Γ ⊢ R(S) : qI . Abelard responds by choosing a binding fromΓ , say,F : θ, and
challengeśEloı̈se to proveF : θ. Éloı̈se then responds with an environmentΓ ′ such
thatΓ ′ ⊢ R(F) : θ. The play either alternates betweenÉloı̈se and Abelard indefinitely,
or ends when one of the players is unable to move.Éloı̈se wins a play if at some point,
it produces the empty type environment as a move (so that Abelard is unable to pick
a binding), or if the play is infinite, and 0 is an infinitely-occurring priority (i.e. it is
trapped in an acceptingQi). See Appendix C for a linear-time algorithm for solving
weak Büchi games.

By adapting the proof of the main result of Kobayashi and Ong [6], we obtain the
following characterisation.

Theorem 3. Given a recursion schemeG and an AWTA, [[G]] is accepted byA if, and
only if,G is well-typed inλA

∧ (i.e. Éloı̈se has a winning strategy inG(G,λA
∧)).

The algorithms ΞA and Ξ̂A Fix an instance of the model checking problem: a re-
cursion schemeG and an AWTA. Based on Theorem 3, we present a type-inference
approach to decide whetherA accepts[[G]]. Our task is to construct, and then solve,
the weak Büchi gameG(G,λA

∧). Building the underlying game graph naı̈vely (e.g. by
constructing the edge-set explicitly) would be prohibitively expensive. The number of
Éloı̈se-nodes in tandem with types is subject to ann-tall tower-of-exponential growth,
wheren is the order of the recursion scheme. Our solution stems fromthe observa-
tion that to solve a given gameG(G,λA

∧), we need only consider a small, reachable
part (from the start node) of the underlying game graph, namely, a certain subgraph
restricted to nodes that describe the computation determined by the problem instance
(G,A).

We present a semi-algorithmΞA (part of the decision procedurêΞA), which returns
“YES” if A accepts[[G]]. ΞA comprises two stages:

- Stage 1. Build a representation of all run-trees ofA over [[G]]; if there is none, we
conclude that[[G]] is not accepted byA. Stage 1 is in turn organised into three sub-
stages, which are similar in outline to Kobayashi’s algorithm [7]; we point out the
differences in the following.

- Stage 2. Derive a game, which will be considerably smaller thanG(G,λA
∧), in which

Éloı̈se can play only those strategies that correspond towell-definedrun-trees, so that
Éloı̈se has a winning strategy in this game if, and only if, one of these run-trees is
accepting.

A pseudocode presentation of algorithmΞA is given in Figure 2.
WriteA as the complement automaton ofA i.e.L(A) = L(A). We defineΞ̂A as the

algorithm that, given inputG, dovetails the computation ofΞA(G) andΞA(G), return-
ing the outcome of the former, but thenegationof the outcome of the latter, whichever
terminates first. In the following we explain the various stages ofΞA.

14 Lester, Neatherway, Ong and Ramsay

Initialisation C := initial configuration graph
Stage1.1% Expand configuration graphC

count := 0;
while (count < MAX & C has open node)

doN := an open node;
try { C := expand(C, N)} catch(NO RUNTREE){ return NO };

Stage1.2% Extract environmentΓ from C
Γ := ElimTE(ΓC);

Stage1.3% ComputeFnw-fixpoint from Γ
while Γ 6= Fnw(Γ) doΓ := Fnw(Γ);
if S : qI 6∈ Γ then gotoStage1.1

Stage2% Solve weak Büchi gameG−(Γ)
if Eloı̈se has a winning strategy inG−(Γ) then returnYESelse gotoStage1.1

Fig. 2. The Semi-AlgorithmΞA

Stage 1.1: Expansion of the configuration graphThe key insight behind Kobayashi’s
algorithm is that the desired type environment may be obtained by repeating a fixpoint
computation, using progressively larger seed values, all of which aresmall because
they contain only (over-approximations of) bindings relevant to the problem instance
(G,A). These bindings (of non-terminals) are extracted fromconfiguration graphs,
which are a representation of an appropriate superpositionof the unique6 run-tree ofA
on a finite (and in general partial) evaluation trace of the recursion schemeG.

We generalise Kobayashi’s configuration graph [7] to the setting of alternating au-
tomataA. Formally a configuration graph is a directed graph, whose nodes are labelled
by triples of the form〈t, q, g〉 wheret is a ground-kind applicative term generated from
the terminals and non-terminals,q is a state of the automaton and the flagg indicates
whether the node isopenor closed. Edges of a graph are labelled by either 0 or pairs
of numbers. The initial configuration graph is a singleton graph whose node, theroot
node, is labelled by〈S, qI , open〉.

Procedure expand(C, N). SupposeN is an open node, with label〈t, q, open〉, of a
configuration graphC. The procedureexpand(C, N) constructs theexpansionof C at
N , which is the graph obtained fromC by replacing the flag ofN by closed , and adding
nodes and edges as follows.

(1) Case: t = f t1 · · · tm. Suppose the set of minimal sets satisfyingδ(f, q) is

{{(j, qijk) | 1 ≤ j ≤ m, 1 ≤ k ≤ rj} | 1 ≤ i ≤ l}

wherel ≥ 0. We assume that each nodeN , whose label contains a term headed by a
terminal symbol – we call such a nodeterminal-headed– has a counter,N.c, which is
initialized tol. If δ(f, q) is false (i.e.l = 0), then dobackPropagate(N); otherwise, for
each1 ≤ i ≤ l, 1 ≤ j ≤ m and1 ≤ k ≤ rj , letN ′ be the node labelled by〈tj , qijk, g

′〉
(we add such a node toC if it does not exist); add an edge fromN to N ′ labelled by

6 becauseA is assumed to be deterministic in [7]

Model Checking Liveness Properties of Higher-Order Functional Programs 15

(i, j), wherei indicates the non-deterministic choice, andj refers to thej-th argument
of the terminalf .

(2) Case: t = F t1 · · · tm andR(F) = λx.s. LetN ′ be the node that is labelled by
〈s[t/x], q, g′〉 (we add such a node toC if it does not exist). Add a 0-labelled edge from
N toN ′.

ProcedurebackPropagate(N)
if there is a path7 from the root toN that does not meet a terminal-headed node

then throwNO RUNTREE
for eachi′ and each terminal-headed nodeN ′ that connects toN via a path

whose trace matches(i′,−) 0∗ do
{ N ′.c := N ′.c− 1;

for eachj and(i′, j)-successorN ′′ of N ′ dodelete(i′, j)-edge fromN ′ toN ′′;
if N ′.c = 0 thenbackPropagate(N ′) }

A configuration graph is said to beclosedif all its nodes are (flagged as) closed.

Stage 1.2: Extraction of type environmentΓC For each nodeN with label〈t, q, g〉,
and for each prefixu of t, we define a setτu,N of types by induction on the kind ofu
as follows.

(1) Case: u has kindo. Thent = u; setτu,N := {q}.
(2) Case: u has kindA → B. Then t = u v v, wherev andu v have kindsA

andB respectively. Let{N1, · · · , Np} be the set of nodes that are reachable fromN
in C, and have labels of the form〈v w, q′, g′〉 wherev “originates” from the copy of
v in N . Let S1, · · · , Sl ⊆ {N1, · · · , Np} be the maximallycompatiblesubsets, in the
sense that two nodesNi andNi′ , reachable fromN by paths (see footnote 7)π andπ′

respectively, arecompatiblejust if whenever there existsπ1 such thatπ1 (i, j) ≤ π and
π1 (i

′, j′) ≤ π′ theni = i′. I.e. eachSi consists of nodes reachable fromN following
compatibleÉloı̈se choices. Thenτu,N consists of typesθ defined as follows: for each
1 ≤ i ≤ l whereSi = {Ni1, · · · , Niri}, for eachθij ∈ τ v,Nij

andθ′ ∈ τu v,N ,

θ :=
∧

{θi1, · · · , θiri , α} → θ′

whereα is a fresh type variable, ifu occurs in an open node (includingN) reachable
fromN via a path compatible withSi; otherwise setθ to

∧
{θi1, · · · , θiri} → θ′. Given

a configuration graphC, we define its type environmentΓC as

ΓC := {(F : τ) | someC-nodeN has label〈F t1 · · · tm, q, g〉, τ ∈ τF,N}

Type variables are subsequently eliminated using Kobayashi’s ElimTE [7]. Even though
a closed configuration graphC may be infinite,ΓC is necessarily finite.

Example 9.Recall Example 7. After expanding 26 nodes, our implementation THORS

computes aΓC containing the following bindings for the non-terminalG:

⊤ → (⊤ → q0 → q0) → q0 ⊤ → ((q0 → q0) → q0 → q0) → q0
⊤ → ((⊤ → ql) → ⊤ → ql) ∧ ((qr → qr) → qr → qr) → qr

7 A path (in a configuration graph) is a sequence that matches the regular expression
〈node〉 (〈edge label〉 〈node〉)∗; its trace is the subsequence of edge labels.

16 Lester, Neatherway, Ong and Ramsay

Stage 1.3: Computation ofFnw-fixpoint from seedΓ Henceforth letΓ and∆ range
overG-consistent type environments. We define a monotone function on type environ-
ments

Fnw(Γ) := {(F : θ) ∈ Γ | ∃∆ ⊆ Γ .∆ ⊢ R(F) : θ}

(The subscript ofFnw emphasises the “non-weakening” nature of the systemλ
A
∧ .) The

following is a straightforward consequence of the Knaster-Tarski Fixpoint Theorem.

Lemma 3. Let Γ be aG-consistent type environment. WritingF i
nw(Γ) to mean the

i-fold application ofFnw to Γ , Fnw(· · · (Fnw(Γ))), we have a descending sequence

F0
nw(Γ) := Γ ⊇ F1

nw(Γ) ⊇ F2
nw(Γ) ⊇ · · · ⊇ F i

nw(Γ) ⊇ F i+1
nw (Γ) ⊇ · · · .

There exists ann ≥ 0 such thatFn
nw(Γ) = Fn+1

nw (Γ); let κ be the least suchn. Then
Fκ

nw(Γ)—writtenFixΓ (Fnw)—is the largest fixpoint ofFnw contained inΓ i.e.FixΓ (Fnw)
is the largestΓ ′ such thatΓ ′ ⊆ Γ , and for every(F : θ) ∈ Γ ′ there exists∆ ⊆ Γ ′

such that∆ ⊢ R(F) : θ.

Example 10.Recall again Example 7. THORScomputesΓ = FixΓC
(Fnw) with bind-

ings of G exactly as in Example 9. Furthermore, the fixpoint containsS : q0, so it
witnesses the existence of a run tree ofA2 over[[GD2

]].

Stage 2: Construction and solution of the gameG−(Γ) The weak Büchi game
G−(Γ) = 〈VA, VE , E, v0, Ω

′〉 is constructed using the fixpointΓ obtained from Stage
1.3 and an auxiliary functionTEnvΓ , whose domain of definition isΓ , which maps
F : θ to {∆ ⊆ Γ | ∆ ⊢ R(F) : θ}. Recall Definition 3. As shown in Lemma 2,
the gameG−(Γ) will inherit the weakness of the specification automaton so that the
nodes of the game graph may be partitioned according to a linear order. The game may
be solved in linear time by proceeding up the ordering. Within each partitionVi, each
terminal nodev is markedt or f according to whetherv ∈ VA or VE . The effect of this
is then propagated such that any predecessorv that is now fully determined8 are marked
and propagated in turn. After this stage, remaining nodes are marked according to the
acceptance condition ofVi, and the effect propagated as before. Processing ofVi is now
complete.Éloı̈se has a winning strategy fromv0 just if v0 is markedt after processing
of all Vi. See Appendix C for a presentation of the linear-time algorithm.

Remark 3. (i) In caseA is conjunctive, Stage 2 ofΞA may be modified such that
the “else gotoStage1.1” branch is replaced by “return NO” (this indicating that the
single possible run-tree is not accepting). Furthermore this modified version is guaran-
teed to terminate [7] without runningΞA andΞA in parallel.

(ii) In caseA is a co-trivial automaton,[[G]] is accepted byA if, and only if, Éloı̈se
has a strategy that forces every play to be finite, because, byconstruction, every node
of the game graph is rejecting.

(iii) In caseA is a trivial automaton, every node of the corresponding weakBüchi
gameG−(Γ) is accepting. Thus Stage 2 is redundant; it can be replaced bythe single
command “returnYES”.

8 v ∈ VE (resp.VA) with anychild t (resp.f) or all childrenf (resp.t)

Model Checking Liveness Properties of Higher-Order Functional Programs 17

5 Correctness, complexity and optimisations

Correctness Fix an AWTA and a HORSG. We show the following in Appendix D:

Theorem 4 (Correctness).

(i) If A accepts[[G]], thenΞA terminates on inputG and returns YES.
(ii) If A rejects[[G]], then ifΞA terminates on inputG then it returns NO.

HenceΞ̂A is a procedure for deciding ifA accepts[[G]].

Example 11.Recall once more Example 7. The game graph for the resulting game
G−(Γ), as computed by THORS, is shown in Figure 3.́Eloı̈se nodes are drawn as dia-
monds and Abelard nodes as squares. Environments and types are omitted for brevity.
There are two partitions: an accepting partition, where alltypes end in stateq0 or qr,
and a rejecting partition, where all types end in stateql. Starting fromS, the play is
either infinite within the accepting partition, or finite andends with Abelard unable to
play from the empty environment. In either case,Éloı̈se wins.

qq₀, qᵣ

I

Close

Read

Close K

I

INewr

G

G Read

S

l

Fig. 3.The gameG−(Γ) resulting from Example 7.

Theorem 5 (Complexity).LetG be an order-n recursion scheme, andA be an APT.
We consider the problem of whether[[G]] is accepted byA.

(i) In caseA is alternating weak, or alternating trivial, or alternating co-trivial, the
problem isn-EXPTIME complete.

(ii) In case A is deterministic weak, or deterministic trivial, or deterministic co-
trivial, the problem is(n− 1)-EXPTIME decidable; it is also(n− 1)-EXPTIME
hard in the first two cases.

The cases of AWT and DWT are due to Kobayashi and Ong [14] and Kobayashi [7]
respectively. See Appendix E for a proof of the Theorem.

Remark 4.The decision problem FINITE (Is the tree generated by a given order-n re-
cursion scheme finite?) is in(n − 1)-EXPTIME, and is conjectured to be(n − 1)-
EXPTIME hard [14]. It follows from König’s Lemma that FINITE reduces to the deter-
ministic co-trivial case of the acceptance problem of Theorem 5.

18 Lester, Neatherway, Ong and Ramsay

Optimisation MemoryTime forTΓ Game NodesTime SolvingTotal Time
None >4GB — — — —
Canonisation 2.3GB 4168 359 .100 4169
Bitsets 301MB 200 359 .107 201
Environment Minimisation 4MB .049 53 .001 .121
Subtype Minimisation 4MB .049 53 .001 .123
Subtype but not
Environment Minimisation 4MB .088 91 .002 .162

Table 1. The effects of various optimisations onTΓ calculation. Times are in seconds.

Optimisation Given a type environmentΓ and a terms, we use an efficient type-
inference scheme (see Appendix F) to compute the set of validtype judgements for
s under subsets ofΓ , which we denoteTΓ (s). Our initial implementation ofTΓ was
slow. However, we discovered a number of optimisations thatimproved performance
considerably in the examples we tested. The improvement on one example (order5-v-
dwt) can be seen from the results in Table 1, which shows thecumulative (orders of
magnitude)improvement in memory usage and speed of THORSwith different optimi-
sations enabled, as well as the size of the resulting game graph and time taken to solve
it. See Appendix G for a full discussion of the optimisation techniques.

6 Implementation and experiments

We have constructed THORS (Types for Higher-Order Recursion Schemes), a model
checker for recursion schemes, which can be tested via a web-interface athttps:
//mjolnir.comlab.ox.ac.uk/thors/. THORS implements the 2-stage algorithm
presented in Section 4. A number of features are worth mentioning.

(i) When expanding the configuration graph in Stage 1.1, a heuristic is used when
determining which node should be chosen to be expanded. Opennodes are selected
according to a breadth-first strategy. However, since we have found it most productive
to search deeper in the graph, for each node selected in this way, a bounded (above and
below) number of open descendants are expanded according toa depth-first search.

(ii) We have implemented the two optimisations of Kobayashi[7, Section 3.3] (use
of canonical types and efficient computation ofElim).

(iii) The computation of theFnw-fixpoints in Stage 1.2 uses the optimised type
system with subtypingλA

∧,≤ of Appendix F.

(iv) We have implemented the collapsing optimisation for the co-trivial case and
the optimised computation ofTΓ described in Section 5; see Appendix G for details.

We have evaluated the tool using eight example programs which are presented in
Table 2. The columns “O”, “R” and “Q” indicate the order of therecursion scheme,
the number of rules in the scheme and the number of states in the property automa-
ton respectively. The columns “Time”, “Nodes”, “Game” record the elapsed time until
termination (in milliseconds), the number of nodes in the configuration graph and the
number of nodes in the game graph respectively. The column “Result” records whether

Model Checking Liveness Properties of Higher-Order Functional Programs 19

the property was satisfied (Y) or unsatisfied (N). The final column indicates the classi-
fication of the property automaton.

Example O R Q TimeNodesGameResultProperty
D1 4 7 2 1 19 16 Y Deterministic Weak
D2 4 7 3 1 26 17 Y Conjunctive Weak
D2-ex 4 7 3 1 26 - Y Alternating Trivial
intercept 4 15 2 35 200 31 Y Conjunctive Weak
imperative 3 6 3 129 200 17 Y Deterministic Weak
boolean2 2 15 1 1 13 - Y Deterministic Trivial
order5-2 5 9 4 19 200 37 N Deterministic Co-trivial
lock1 4 12 3 2 32 32 Y Deterministic Co-trivial
order5-v-dwt 5 11 4 163 400 53 Y Deterministic Weak
lock2 4 11 4 109 800 - Y Deterministic Trivial
example2-1 1 2 2 190 200 - Y Deterministic Trivial

Table 2. Experimental data for AWT model checking.

D1, D2 and D2-exThese three examples are detailed in Examples 3, 7 and 8 re-
spectively. The “D2-ex” example has an empty entry for “Game” due to the fact that
although the automaton is alternating (and non-conjunctive), it requires only a trivial
acceptance condition and hence it is sufficient to find any run-tree.

intercept This example is a model of an OCaml program which takes input on one
incoming network socket and mirrors this data to a second output socket. The desired
behaviour is that whenever the first socket is closed, the second socket must eventually
close. More details can be found in Appendix H.

imperative This example is a translation of the motivating example in Cook, Kosk-
inen and Vardi [15]. It is a simple C-program containing two integer variablesx andn.
The property of interest is given in CTL asAG[(x = 1) ⇒ AF (x = 0)]. Although
C-programs are, by definition, first-order, the transformation process (in particular the
CPS-transform) artificially raises the order by 3. However,it is notable that the trans-
formation is considerably shorter than that required by [15] and the raising of the order
does not seem to hinder the tool. More details can be found in Appendix H.

boolean2 This example is a translation of a Boolean program which is obtained
from a C program by predicate abstraction using 3 predicates. We check a reachability
property. More details can be found in Appendix H.

order5-2 and lock1 These examples are both taken taken from [7] but, rather than
checking the trivial properties detailed there, we insteadcheck the corresponding co-
trivial property. The former and also ‘order5-v-dwt’ are designed to evaluate the per-
formance of the tool on HORS which are, according to the worst-case time-complexity,
the most likely to cause efficiency problems.

order5-v-dwt This example is due to Kobayashi9. The scheme generates resources,
non-deterministically reading and closing them in a (hopefully) sensible fashion. We
require that if a file is ever read, then it is certainly closed.

lock2 and example2-1These examples are taken from [7] and have been provided
to give an indication of performance relative to the TRecS tool introduced therein.
Since we do not know of any other tools that can handle alternating or conjunctive

9 Personal communication (7 April 2010)

20 Lester, Neatherway, Ong and Ramsay

automata with possibly non-trivial acceptence conditions, this sample of deterministic
trivial properties is the only comparison we are able to provide.

Further directions and conclusions We have formulated the resource usage verifica-
tion problem (in accord with a parity resource automaton) for RUL and shown that it
reduces to the APT model checking problem for HORS. We have developed an algo-
rithm to automate its solution for the practically-relevant case of AWT. Our implemen-
tation shows the algorithm to perform surprisingly well on small examples despite the
inherent worst-case complexity. In future work, we plan to extend our tool to handle
full Büchi games, which will allow for specifications in CTL∗ and perform a detailed
study of the efficiency of our implementation.

References

1. Kobayashi, N.: Types and higher-order recursion schemesfor verification of higher-order
programs. In: Proceedings of POPL 2009, ACM Press (2009) 416–428

2. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In:
LICS’06, Computer Society Press (2006) 81–90 Long version (55 pp.) downloadable at
users.comlab.ox.ac.uk/luke.ong/.

3. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: POPL. (2002) 331–342
4. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. JCSS18

(1979) 194–211
5. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time

model checking. J. ACM47(2) (2000) 312–360
6. Kobayashi, N., Ong, C.H.L.: A type theory equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In: Proceedings of LICS 2009, IEEE Computer
Society (2009)

7. Kobayashi, N.: Model-checking higher-order functions.In: PPDP’09, ACM (2009) 25–36
8. Kobayashi, N.: A practical linear-time algorithm for trivial automata model checking of

higher order recursion schemes. Submitted to FoSSaCS’11 (2010)
9. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of automata.

Logical Methods in Computer Science3 (2007) 1–23
10. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculusand determinacy. In: Proceedings of

FOCS’91. (1991) 368–377
11. Kupferman, O., Vardi, M.Y.: Freedom, weakness, and determinism: From linear-time to

branching-time. In: LICS. (1998) 81–92
12. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang. Syst.

27(2) (2005) 264–313
13. Kesten, Y., Pnueli, A., Vardi, M.Y.: Verification by augmented abstraction: The automata-

theoretic view. J. Comput. Syst. Sci.62(4) (2001) 668–690
14. Kobayashi, N., Ong, C.H.L.: Complexity of model checking recursion schemes for frag-

ments of the modal mu-calculus. In: Proceedings of ICALP 2009, Springer-Verlag (2009)
15. Cook, B., Koskinen, E., Vardi, M.: Branching-time reasoning for infinite-state systems.

Unpublished preprint. (2010)
16. Niwinski, D.: On fixed-point clones (extended abstract). In: ICALP. (1986) 464–473
17. Kupferman, O., Vardi, M.Y.:Π2 ∩Σ2 ≡ AFMC. In: ICALP. (2003) 697–713
18. Kobayashi, N.: Model checking higher-order programs. preprint (2010)

Model Checking Liveness Properties of Higher-Order Functional Programs 21

19. Engelfriet, J.: Interated stack automata and complexity classes. Information and Computa-
tion 95 (1991) 21–75

20. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: FOS-
SACS’02, Springer (2002) 205–222 LNCS Vol. 2303.

21. Durak, B.:http://abaababa.ouvaton.org/caml/ (2010)

A Parity games, weak B̈uchi games and AFMC

A parity gameis a tuple〈VA, VE , v0, E,Ω〉 such thatE ⊆ V × V is the edge relation
of a directed graph whose node-setV is the disjoint union ofVA andVE (A-nodes and
E-nodes respectively);v0 ∈ V is the start node; andΩ : V → {0, · · · ,M − 1} assigns
a priority to each node. A play consists in the players, Abelard andÉloı̈se, taking turns
to move a token along the edges of the graph. During the play, if the token is on a node
v ∈ VA (respectivelyv ∈ VE), then Abelard (respectivelýEloı̈se) chooses an edge
(v, v′) ∈ E and moves the token ontov′. At the start of a play, the token is placed on
v0. Thus we define aplay to be a finite or infinite pathπ = v0 vn1

vn2
· · · in the graph

that starts fromv0. Supposeπ is a maximal play. The winner ofπ is determined as
follows.

– If π is finite, and it ends in aE-node (respectivelyA-node), then Abelard (respec-
tively Éloı̈se) wins.

– If π is infinite, thenÉloı̈se wins ifπ satisfies theparity conditioni.e. the least pri-
ority that occurs infinitely often in the sequenceΩ(v0)Ω(vn1

)Ω(vn2
) · · · is even;

otherwise Abelard wins.

An Éloı̈se-strategy(or strategy, for short)σ is a map from plays that end in aE-
node to a node that extends the play. We say that a strategyσ is winning if Éloı̈se wins
every (maximal) playπ that conformswith the strategy (i.e. for every prefixπ0 of π
that ends in aVE-node,π0 σ(π0) is a prefix ofπ). Finally a strategyσ is memoryless
(or history-free) ifσ’s action is determined by the last node of the play; formally, for
all playsπ1 andπ2 that are consistent withσ, if their respective last nodes are the same
VE -node, thenσ(π1) = σ(π2). We say that a parity game issolvable(from v0) if there
is a winning strategy (foŕEloı̈se) fromv0. It is known that if there is a winning strategy
for a parity game, then there is also a memoryless winning strategy for the game.

Alternation-free modal mu-calculus (AFMC) and weak Büchi game

Thealternation depthof a modal mu-calculus formula is the maximal depth of a chain
of alternating least and greatest fixpoint operators. Sincealternation depth is the major
determinant of complexity, it is appropriate to use it to classify mu-calculus formulas.
For i ≥ 0, Σi (respectivelyΠi) consists of formulas of alternation depthi in which the
outermost fixpoint operator in the nested chain is least (respectively greatest) fixpoint.
(See [16] for a definition.) Thus formulas of (fixpoint free) modal logic areΠ0 = Σ0.
The alternation-free modal mu-calculus(AFMC) consists of formulas with no alter-
nation between least and greatest fixpoint operators. So AFMC is a natural closure of
Σ1 ∪ Π1, which is contained inΣ2 ∩ Π2; in factAFMC ≡ Σ2 ∩ Π2 (see [17]). The

22 Lester, Neatherway, Ong and Ramsay

well-known equivalence [10] between APT and modal mu-calculus specialises to one
between AWT and AFMC.

Theorem 6 (Kupferman and Vardi [11]). AWT and AFMC are equi-expressive, and
there are linear translations between them.

B Proof of Theorem 2 (Reduction)

In this section we develop a somewhat non-standard notion ofweak bisimulation be-
tween labelled transition systems (viewed as game graphs),and prove a general result
(Theorem 7) to the effect that́Eloı̈se winning strategies of the parity game over one
graph determine théEloı̈se winning strategies of the parity game over the othergraph.
We then show that Theorem 2 is a corollary of Theorem 7.

Remark 5. Comparison with [18, Theorem 3.10] and the proof therein. Theorem 2 ex-
tends [18, Theorem 3.10] from safety properties (trivial automata) to all properties ex-
pressible in the modal mu-calculus (equivalently alternating parity automata). Our proof
of the Theorem is both a simplification (we avoid the intermediate transition system of
extended run-time states– see [18, Appendix A]) and an extension of Kobayashi’s proof
of Theorem 3.10; in particular Theorem 7 is a theorem of some generality.

Labelled transition system compatible with an alternatingparity automaton

Fix a setQ of states and a setDir of directions (or actions). Alabelled transition system
over(Q,Dir) (or (Q,Dir)-LTS, or simply LTS) is a tuple

T = 〈C, 〈
d

−→ | d ∈ Dir ∪ {ǫ}〉, I, state, ρ〉

whereC is a set of configurations,
d

−→ ⊆ C × C is a labelled transition relation with
d ranging overDir ∪ {ǫ}, I ⊆ C is a set of start configurations, andstate : C −→ Q
andρ : C −→ Σ are respectively the state and node-labelling maps. For convenience,
we sometimes write elements ofC as pairs(q, c) whereq = state(c); we refer toq as
thestate, andc thecode.

Henceforth we assume that LTSs aredeterministic, meaning that they are

(i) deterministic quaedge-labelled directed graphs: for everyd ∈ Dir∪{ǫ}, if s
d

−→ s1

ands
d

−→ s2 thens1 = s2, and

(i) ǫ-deterministic: if s
ǫ

−→ s′ then for everyd ∈ Dir ∪ {ǫ}, if s
d

−→ s′′ thend = ǫ
ands′ = s′′. Furtherstate(s) = state(s′). We call such ans asilent configuration.

Thus, for eachd, the transition relation
d

−→ is functional. Further, we assume that
the transition relation isdirectional, meaning that for eachd ∈ Dir ∪ {ǫ}, there is

a (partial) function,succd (say), such that for everyq andc, if (q, c)
d

−→ (q′, c′) then
c′ = succd(c). I.e. the code-component of the configuration returned by the transition

function
d

−→ depends only on the code-component of the argument.

Model Checking Liveness Properties of Higher-Order Functional Programs 23

LetA = 〈Σ,Q, δ, qI , Ω〉 be an alternating parity automaton. We say that a(Q,Dir)-
LTS T is compatiblewith A just if (i) the state of every initial configuration is the ini-
tial stateqI ; (ii) for each configuration(q, c), and for eachd ∈ Dir ∪ {ǫ}, there is a

T -transition(q, c)
d

−→ (q′, succd(c)) iff there is a (minimal)S that satisfiesδ(q, ρ(c)),
and(q′, d) ∈ S. Intuitively such an LTS is the underlying graph of a parity game that
characterises the decision problem: isT accepted byA.

We say that a configuration(q, c) has aunique out-transitionjust if {(q′, c′) |

(q, c)
d

−→ (q′, c′), d ∈ Dir ∪ {ǫ}} is a singleton set.

Given a (Q,Dir)-LTS T = 〈C, 〈
d

−→ | d ∈ Dir ∪ {ǫ}〉, I, state, ρ〉 compatible
with an alternating parity automatonA = 〈Σ,Q, δ, qI , Ω〉, we define a (parity) game
G(T ,A) as follows.

– The start position is the setI.
– If the current position is a configuration(q, c), then it is Éloı̈se’s turn to move.

Éloı̈se chooses a minimal setX = {(q1, d1), · · · , (qk, dk)} that satisfiesδ(q, ρ(c)),
and the new position is the setsuccX(c) := {(qi, succdi

(c)) | 1 ≤ i ≤ k}.
– If the current position is a configuration setB, then it is Abelard’s turn to move. He

chooses some element(q, c) ∈ B, which becomes the new position.

The winning condition is defined as follows. If a player is unable to move at a
position, then the other player wins. Suppose an infinite play ensues

(q0, c0) C0 (q1, c1) C1 · · ·

if the least priority that occurs infinitely often in the sequenceΩ(q0) Ω(q1) Ω(q2) · · ·
is even, theńEloı̈se wins; otherwise Abelard wins.

SetDir = {1, 2} ∪ Q, whereQ is a fixed set of states, andQ′ = Q ∪ {qun}. We
consider two instances of(Q′,Dir)-LTS compatible with an alternating parity automa-
ton.

LTS determined byD andW . Fix a RUL programD and a parity resource automa-
ton W = 〈Q,L, δ,QI , Ω〉. Then, using the notation in the preceding, the transition
system

⋃n
i=1 Txi

(i.e. disjoint union ofTxi
of Definition 1, where eachxi is a re-

source of sortqi ∈ QI = {q1, · · · , qn}) is a (Q′,Dir)-LTS T1 = 〈C1, 〈
d

−→ | d ∈
Dir ∪ {ǫ}〉, I1, state1, ρ1〉, compatible with the alternating parity automatonAW =
〈Q′, Σ1, δ1, qun, Ω1〉 where

Σ1 = {Fi : 1 | 1 ≤ i ≤ n} ∪ {newqi
j : 1 | 1 ≤ i, j ≤ n}

∪ {acc+a : 1, acc−a : 1 | a ∈ L} ∪ {if∗ : 2, ⋆ : 1}

andδ1 is the map:

(q, Fi) 7→ (ǫ, q)
(q, if∗) 7→ (1, q) ∧ (2, q)

(q, newqi
j) 7→

{
(1, qun) ∧ (2, qi) if q = qun andi = j
(1, q) otherwise

(q, acc+a) 7→
∨

i

∧
q′∈Qi

(1, q′) if q ∈ Q andδ(q, a) = {Q1, · · · , Qn}
(q, acc−a) 7→ (ǫ, q)

(q, ⋆) 7→ (ǫ, q)

24 Lester, Neatherway, Ong and Ramsay

The node-labelling mapρ1 : C1 → Σ1 does the obvious thing, except mapping
(H, acca y e)x to acc+a if x = y, and toacc−a otherwise; and mapping(H, newqi e)xj

to newqi
j . The priority mapΩ1 extendsΩ by mappingqun to the largest priority.

Lemma 4. The gameG(D,W) is justG(T1,AW).

LTS determined by HORSGD and APTAD,W . From the transform, HORSGD =
〈Σ,N ,R〉 and APTAD,W = 〈Σ,Q′′, δ′, Ω′〉, we define a(Q′,Dir)-LTS T2, compat-
ible with AD,W , whose transition function is defined as follows:

(q, F e)
ǫ

−→ (q, e′[e/y])

(q, br if e1 e2)
i

−→ (q, ei) i = 1, 2

(q, brnew e1 e2)
i

−→ (q, ei) i = 1, 2

(q, νq
′

e)
1

−→

{
(q′, e) if q = qun
(qany, e) otherwise

(qany, a e)
1

−→ (qany, e)

(q, a e)
q′

−→ (q′, e) if q ∈ Q, andq′ ∈ S satisfiesδ(q, a) for some minimalS
(q, ⋆)

ǫ
−→ (q, ⋆)

and the priority functionΩ′ is that of the automaton. The following straightforward
lemma is just the standard restatement of accepting run-trees as winning strategies.

Lemma 5. LetGD andAD,W be as before. Then[[GD]] is accepted byAD,W if and
only if Éloı̈se has a winning strategy for the gameG(T2,AD,W).

Winning-strategy bisimulation between parity games

A notion of weak bisimulation.Let 〈Ci, 〈
d

−→ | d ∈ Dir ∪ {ǫ}〉, I, statei, ρi〉 be a
(Q,Dir)-LTS, for i = 1, 2; and lets ∈ C1 andt ∈ C2. We define

(i) s ∼ t iff state1(s) = state2(t), and there exists′, t′ such thats
ǫ

−→→ s′ and
t

ǫ
−→→ t′ ands′ ≈ t′

(ii) s ≈ t iff

- for everyd ∈ Dir ands′, if s
d

−→ s′ then there exists′′, t′ such thatt
d

−→
d1−→→ t′

ands′
d2−→→ s′′ and each configuration in the sequences

d1−→→ and
d2−→→ (except the

last) has a unique out-transition, ands′′ ∼ t′, and

- for everyd ∈ Dir andt′, if t
d

−→ t′ then there existt′′, s′ such thats
d

−→
d1−→→ s′

andt′
d2−→→ t′′ and each configuration in the sequences

d1−→→ and
d2−→→ (except the

last) has a unique out-transition, ands′′ ∼ t′

Theorem 7 (Winning-strategy bisimulation). For i = 1, 2, let Ti = 〈Ci, 〈
d

−→| d ∈
Dir ∪ {ǫ}〉, Ii, statei, ρi〉 be a (Q,Dir)-LTS, compatible with an alternating parity
automatonAi = 〈Σi, Q, δi, Ωi〉, such that

Model Checking Liveness Properties of Higher-Order Functional Programs 25

(i) for each initial (q, c1) ∈ I1, there is some initial(q, c2) ∈ I2 such that(q, c1) ∼
(q, c2); conversely for each initial(q, c2) ∈ I2, there is some initial(q, c1) ∈ I1
such that(q, c1) ∼ (q, c2)

(ii) whenever(q1, c1) ≈ (q2, c2), thenδ1(q1, ρ1(c1)) = δ2(q2, ρ2(c2))
(iii) Ω1 = Ω2.

ThenÉloı̈se has a winning strategy inG(T1,A1) if and only if he has a winning strategy
in G(T2,A2).

Proof. (Sketch) Supposeτ is a Éloı̈se winning strategy forG(T2,A2). We construct
a winning strategyσ for G(T1,A1) by imitating τ , and we do so round by round.
Suppose Abelard picks(q, c1) ∈ I1 with (q, c1) ∼ (q, c2). It follows from the definition
of ∼ that for somec′1 and c′2, we have(q, c′1) ≈ (q, c′2). Because ofǫ-determinacy
andAi-compatibility, there is no choice forσ at each configuration in the sequence
(q, c1)

ǫ
−→→ (q, c′1), exclusive of(q, c′1). At the configuration(q, c′1), Éloı̈se copies the

strategyτ ’s action at(q, c′2), which is a valid move because of assumption (ii). Now,

suppose Abelard chooses the transition(q, c′1)
d

−→ γ, it follows from the definition of≈

that there are configurationsγ1, γ2 such that(q, c′1)
d

−→
d1−→→ γ1 and(q, c′2)

d
−→

d2−→→ γ2

with γ1 ∼ γ2. Since each configuration in the sequence(q, c′1)
d

−→
d1−→→ γ1, except

the last, has the unique out-transition property and isA1-compatible,σ has no choice
at each configuration in the sequence. Thus we have completedone round of strategy
simulation. We argue inductively in a similar fashion. The satisfaction of parity follows
from assumption (iii).

Relating the two LTSs

We relate the reduction of a RUL program and its recursion-scheme translate. We write
(H, e)x ≃ (q, t) to meanstate (H, e)x = q, and

(i) if x 6∈ dom(H) with H = {y1 : q1, · · · , yn : qn} thent = e[K/yi] (and neces-
sarily q = qun)

(ii) if x ∈ dom(H) thenH = {y1 : q1, · · · , yn : qn, x : q} andt = e[K/yi, I/x].

Henceforth we shall write(−)† to mean the substitution(−)[K/yi, I/x] or (−)[K/yi],
according to whetherx ∈ dom(H) or not.

In the following we show that the two(Q′,Dir)-LTSs,T1 andT2, satisfy the as-
sumptions of Theorem 7 by a case analysis. Theorem 2 then follows from Lemma 4
and Lemma 5. First we remark that there is no harm in ignoring transitions inT2 of the
form

(q, br (e†K) (νq
′

(e† I)))
2

−→ (q, νq
′

(e† I))

(and hence all transition thereafter, and so we may regardT2 as a(Q′,Dir)-LTS) be-

cause the transition that follows is necessarily(q, νq
′

(e† I))
1

−→ (qany, e
† I), and it

is easy to see that́Eloı̈se has a winning strategy starting from a configurationof state
qany.

26 Lester, Neatherway, Ong and Ramsay

1. Assume:x 6∈ dom(H).

(H, newq e)x
1

uujjjjjjjj
2

��

≃ (qun, newq e†)

ǫ
��

(H ∪ {y : q}, e y)x (H ∪ {x : q}, e x)x (qun, br (e
† K) (νq (e† I)))

1

uujjjjjjj
2

��

(qun, e
† K) (qun, ν

q (e† I))

1
��

(q, e† I)

We have(H ∪ {y : q}, e y)x ≃ (qun, e
†K) and(H ∪ {x : q}, e x)x ≃ (q, e† I).

2. Assume:x ∈ dom(H) and soq ∈ Q.

(H ∪ {x : q}, newq′ e)x
1

tthhhhhhhhh
≃ (q, newq′ e†)

ǫ
��

(H ∪ {x : q, y : q′}, e y)x (q, br (e† K) (νq′ (e† I)))
1

uulllllll
2

��

(q, e† K) (q, νq′ (e† I))

1
��

(qany , e
† I)

We have(H ∪ {x : q, y : q′}, e y)x ≃ (q, e†K). As remarked in the preceding, we

ignore the
2

−→-transition on the RHS and hence all transitions thereafter.
3.

(H ∪ {x : q}, acca x e)x
q′

��

≃ (q, acca I e†)
ǫ

��

(H ∪ {x : q′}, e)x (q, I a e†)

ǫ
��

(q, a e†)

q′
��

(q′, e†)

We have(H ∪ {x : q′}, e)x ≃ (q′, e†).

4. Assume:x 6∈ dom(H)

(H ∪ {y : q}, acca y e)x
ǫ

��

≃ (qun, acca K e†)

ǫ
��

(H ∪ {y : q}, e)x (qun,K a e†)

ǫ
��

(qun, e
†)

We have(H ∪ {y : q}, e)x ≃ (qun, e
†).

Model Checking Liveness Properties of Higher-Order Functional Programs 27

5.

(H ∪ {x : q, y : q′}, acca y e)x
ǫ

��

≃ (q, acca K e†)

ǫ
��

(H ∪ {x : q, y : q′}, e)x (q,K a e†)

ǫ
��

(q, e†)

We have(H ∪ {x : q, y : q′}, e)x ≃ (q, e†).

6.

(H, F e)x

ǫ
��

≃ (q, Fe†)

ǫ
��

(H, e′[e/x])x ≃ (q, e′
†
[e†/x])

Note that a special case is(∅, S)xi
≃ (qun, S) for eachi.

7.

(H, if∗ e1 e2)x
1

xxqqqqqq
2

��

≃ (q, if∗ e†
1
e†
2
)

1

zzuu
uu

u
2

��

(H, e1)x (H, e2)x (q, e†
1
) (q, e†

2
)

We have, fori = 1, 2, (H, ei)x ≃ (q, e†i).
Thus we can conclude that whenever(H, e)x ≃ (q, e†), then(H, e)x ∼ (q, e†). In

particular, satisfaction of condition (i) of Theorem 2 follows from Case 6. It is straight-
forward to check that condition (ii) is satisfied by inspecting each of the above cases.

C Linear-time algorithm for solving weak Büchi games

The weak Büchi gameG−(Γ) = 〈VA, VE , E, v0, Ω
′〉 is constructed using the fixpoint

Γ obtained from Stage 1.3 and an auxiliary functionTEnvΓ , whose domain of defini-
tion is Γ , which mapsF : θ to {∆ ⊆ Γ | ∆ ⊢ R(F) : θ}. The underlying directed
graph has node-setVA ∪ VE , with start nodev0 := (S : qI). We set:

VA := {(∆, q) | ∃ (F : θ) . ∆ ∈ TEnvΓ (F : θ) ∧ q = state(θ)}
E := {((F : θ), (∆, state(θ))) | ∆ ⊢ R(F) : θ} ∪ {((∆, q), (F : θ)) | (F : θ) ∈ ∆}

The priority functionΩ′ maps(F : θ) to Ω(state(θ)), and (Γ, q) to Ω(q), where
Ω is the priority function ofA. G−(Γ) inherits a partial order≤, over a partition
{V1, · · · , Vn} (say) ofVA ∪ VE , from the AWTA, as in Lemma 2.

Solving weak B̈uchi game〈VA, VE , E, v0, Ω〉 in linear time. We describe a solver for
an (arbitrary) weak Büchi game. First construct a linear ordering6 of the partition of
VA ∪ VE such that≤ ⊆ 6; w.l.o.g. assumeV1 6 V2 6 · · · 6 Vn. The algorithm
proceeds by rounds: at the end of roundi, all nodes inVi are marked byt or f . The idea

28 Lester, Neatherway, Ong and Ramsay

is thatÉloı̈se has a winning strategy from a node if, and only if, it is markedt. We label
each nodev by a pair〈num left , pred list〉 wherenum left is a counter (initialized
to v’s out-degree) that maintains the number of successor nodesyet to be processed
(beforev’s mark can be determined), andpred list is a list of v’s predecessors. The
algorithm maintains a numberi (initialized to 1) indicating the current round, and two
stacksStack t andStack f . The stacks contain nodes which have been markedt andf
respectively but have not yet propagated their marks further. Starting from round 1, the
algorithm proceeds as follows.

As soon as a node is markedt (resp.f) (and if it is not already on a stack), it is
pushed ontoStack t (resp.Stack f). As long asStack t or Stack f is non-empty, a nodev
is popped from a stack, and we process every (unmarked) nodev′ in thepred list of v
using the following rules.

- Case: v is markedt. If v′ ∈ VE then markv′ with t else{if num left = 1 then mark
v′ with t else decrementnum left }.

- Case: v is markedf . If v′ ∈ VA then markv′ with f else{if num left = 1 then mark
v′ with f else decrementnum left }.

At the start, when bothStack t andStack f are empty, mark all terminal nodesv ∈ Vi

(i.e. those with out-degree 0) witht or f according to whetherv ∈ VA orVE . The stacks
are then processed as outlined above and the marks propagated as far as possible. When
the stacks are again empty, all remaining nodesv ∈ Vi are marked in accord with the
type of Vi (i.e. the mark ist or f according to whetherVi is accepting or rejecting)
and the stacks are processed again;i is then incremented. In this way, every node in
Vi is marked and its effect fully propagated at the end of roundi. Éloı̈se has a winning
strategy fromv0 just if v0 is markedt.

Since each node is pushed onto a stack only once, and since theprocessing of a
node popped from a stack involves a constant number of operations on each of its (as
yet unmarked) predecessor node, the overall time complexity is linear in the size ofG.

D Proof of Theorem 4 (Correctness)

Proof. (i) Suppose, for a contradiction,[[G]] is accepted byA but ΞA does not
terminate on inputG. LetCi be the configuration graph that is constructed at the end of
Stage 1.1 in thei-th iteration of the loop, and letC be the union of all theCi’s. Then,
since the expansion process is assumed to be fair,C is the closed configuration graph. It
follows from Lemma 8 that there existsi such thatΓC ⊆ ElimTE (ΓCi

). By Lemma 3,
at thei-th iteration, stage 1.3 constructs the largest type environmentΓ that is a fixpoint
of Fnw andΓ ⊆ ElimTE (ΓCi

). Now it follows from Theorem 8 thatΓC is a fixpoint of
Fnw andS : q0 ∈ ΓC . Thus we haveS : q0 ∈ ΓC ⊆ Γ . It follows from Theorem 9 that
Éloı̈se has a winning strategy inG−(Γ). Hence the algorithmΞA on inputG terminates
by thei-th iteration, returning YES.

(ii) Suppose[[G]] is rejected byA and the algorithmΞA terminates on inputG.
Either there is no run-tree ofA over[[G]], or there are but none is accepting. If the former,
then after some finite iterations, the algorithm exits and returns NO, as desired. If the
latter, then it follows from Theorem 9 thatÉloı̈se does not have a winning strategy for

Model Checking Liveness Properties of Higher-Order Functional Programs 29

G−(Γ), for every type environmentΓ that ever reaches Stage 2 during the computation
(for if Éloı̈se had a winning strategy inG−(Γ) then the same strategy would be winning
in G−(ΓC), contradicting Theorem 9). Hence the computation will not terminate. Thus
this case is impossible.

The rest of the subsection is concerned with Lemma 8 and Theorem 8. The proofs
are obtained by extending Kobayashi’s arguments to the casewhereA is an AWT. Letπ
be a sequence over{0, 1, 2, · · · ,m} wherem is the largest arity of terminals. We write
C(π) for the nodeN such that a path from the root toN is labelled byπ.

Let C be the closed configuration graph, andC′ be a finitely expanded graph. Sup-
pose that the nodeC(π) is labelled by[t s, q]. We define the relationC′ �π,t C by
structural induction on the sort oft as follows.

(i) If t has sorto andτ t,C′(π) = {q} thenC′ �π,t C.
(ii) Supposet has sortκ1 → κ2; it follows thats has the forms0 s′. ThenC′ �π,t C

just if the following conditions hold:
(a) C′ �π,t s0 C
(b) for every element ofτ t,C(π)—which must have the form

∧m
i=1 τi → τ ′ with

τ ′ ∈ τ t s0,C(π), for eachi, there exists a pathπi such thatτi ∈ τ s0,C(π πi)

andC′ �π πi,s0 C.

Elim(q) := {q}
Elim(

∧m
i=1 τi → τ) := {

∧m
i=1 θi → θ | θi ∈ Elim ′(τi), θ ∈ Elim(τ)}

Elim ′(τ) :=

{
Elim(τ) ∪ {⊤} if τ contains a type variable
Elim(τ) otherwise

By abuse of notation, we use the same notation for the pointwise extension ofElim to a
set of types; e.g.Elim(τ t,C(π)). We defineElimTE as the pointwise extension ofElim
i.e.

ElimTE (Γ) := {F : θ | F : τ ∈ Γ, θ ∈ Elim(τ)}

Lemma 6. Let C be the closed configuration graph. IfC′ �π,t C then the following
holds:

(I) If C′′ is obtained from expansions ofC′ thenC′′ �π,t C
(II) τ t,C(π) ⊆ Elim(τ t,C′(π)).

Proof. Let the label ofC(π) be[t s, q]. The proof proceeds by induction on the sort oft.
In case the sort oft is o, then by definition ofC′ �π,t C, we haveτ t,C′(π) = {q}. By the
definitions of expansion and ofτ t,N , we haveτ t,C′(π) = τ t,C′′(π) = τ t,C(π) = {q}.
Thus we haveC′′ �π,t C andτ t,C(π) = {q} ⊆ {q} = Elim(τ t,C′(π)) as required.

If the sort of t is κ1 → κ2 then it follows from the assumptionC′ �π,t C that
(i) s = s0 s′, (ii) every type inτ t,C(π) has the form

∧m
i=1 τi → τ , (iii) C′ �π,t s0 C,

and (iv) for eachτi there existsπi such thatτi ∈ τ s0,C(π πi) andC′ �π πi,s0 C. By
the induction hypothesis (I), we haveC′′ �π,t s0 C andC′′ �π πi,s0 C, which implies
(I). By the induction hypothesis (II), we also haveτ t s0,C(π) ⊆ Elim(τ t s0,C′(π)) and

30 Lester, Neatherway, Ong and Ramsay

τ s0,C(π πi) ⊆ Elim(τ s0,C′(π πi)). By the definition ofτ t,C′(π), an element of which has
the form

m∧

i=1

τi ∧
k∧

j=1

σj → τ

whereτi ∈ τ s0,C′(π πi) andτ ∈ τ t s0,C′(π). By definition ofElim , we can construct

each element ofτ t,C(π) as an element
∧m

i=1 αi ∧
∧k

j=1 βj → τ of Elim(τ t,C′(π)) as
follows: (i) chooseαi to beτi; (ii) from Elim(σj), chooseβj to be⊤ if σj contains a
type variable, otherwiseσj is an element ofτ s0,C′(π πi) for somei, and so, chooseσj

to beτi instead.

Lemma 7. LetN = C(π) be a node of a closed configuration graphC, and suppose
thatN is labelled with[t s, q]. Then there exists a finitely-expanded graphC′ such that
C′ �π,t C.

Proof. The proof is by induction on the sort oft. If the sort iso then the result follows
immediately: just expand the graph untilN is expanded, and letC′ be the resulting
graph.

If the sort isκ1 → κ2 thens = s0 s′ and letτ t,N = {
∧rj

j=1 τij → τi | 1 ≤ i ≤
n}. By the induction hypothesis, there exists a finitely expanded graphC′

0 such that
C′
0 �π,t s0 C. By definition ofτ t,N , for eachi and eachj, there existsπij such that

τij ∈ τ s0,C(π πij). By the induction hypothesis, there exists a finitely expanded graph
C′
ij such thatC′

ij �π πij ,s0 C. Thus the union ofC′
0, C

′
11, · · · , C

′
1r1 , · · · , C

′
n1, · · · , C

′
nrn ,

satisfies the required condition by Lemma 6(I).

Lemma 8 (Key).Suppose that[[G]] is accepted byA, and letC be the closed configu-
ration graph forG andA. Then there exists a finitely expanded configuration graphC′

such thatΓC ⊆ ElimTE (ΓC′′) for every finite expansionC′′ of C′.

Proof. For eachFi : τij ∈ ΓC , pick a nodeNij = C(πij) such thatτij ∈ τFi,Nij
. By

Lemma 7, there exists a finitely expanded graphCij such thatCij �π πij ,Fi
C. LetC′ be

the union of theCij ’s, andC′′ be a finite expansion of it. By Lemma 6 (I),C′′ �π πij ,Fi
C

for everyi andj. It then follows from Lemma 6 (II) thatΓC ⊆ ElimTE (C′′) as required.

Theorem 8. Assume[[G]] is accepted by AWTA. If C is a closed configuration graph of
G overA, thenG is well-typed underΓC i.e. for all (F : θ) ∈ ΓC , there existsΓ ⊆ ΓC

such thatΓ ⊢ R(F) : θ, and(S : q0) ∈ Γ .

Proof. For eacht that occurs in a head position in a nodeN of the configuration graph
C (i.e. the label ofN has the form〈t s, q, closed〉), and for eachτ ∈ τ t,N , we first
construct a type derivation treeΠt,τ,N of Γ ⊢ t : τ for someΓ ⊆ ΓC .

Now, supposeF : θ ∈ ΓC andR(F) = λx1 · · ·xm.s. We need to show that
there existsΓ ⊆ ΓC such thatΓ ⊢ λx1 · · ·xm.s : θ. By construction ofC, we have
θ ∈ τF,N , for some nodeN of C. The nodeN must be labelled with[F t1 · · · tm, q]
and has a single outgoing edge to a nodeN ′ with label [s[t1/x1, · · · , tm/xm], q]. By
construction,θ has the shape

∧
{τN1

| N1 ∈ S1} → · · · →
∧

{τNm
| Nm ∈ Sm} → q

Model Checking Liveness Properties of Higher-Order Functional Programs 31

where eachτNi
is some type inτ ti,Ni

, Si is a set of compatible nodes whereti occurs
in a head position, andS1, · · · , Sm are mutually compatible. (The intuition is that the
typeθ is extracted from asinglerun-tree that “contains”N .)

For eachi, let S′
i be the set of nodesNi in Si such that for someΓ ⊆ ΓC , Γ ⊢

ti : τNi
occurs inΠs[t1/x1,···,tm/xm],τ,N ′. From the derivation treeΠs[t1/x1,···,tm/xm],τ,N ′,

we can obtain a derivation for

∆ ∪
m⋃

i=1

{xi : τNi
| Ni ∈ S′

i} ⊢ s : q

for some∆ ⊆ ΓC . SinceS′
i ⊆ Si, we get∆ ⊢ λx1 · · ·xm.s : θ by (ABS) as required.

The following key theorem follows from the proof of the completeness theorem of
Kobayashi and Ong [6].

Theorem 9. LetG be a recursion scheme andA an AWT. Then[[G]] is accepted byA if,
and only if, the closed configuration graphC exists, and́Eloı̈se has a winning strategy in
the derived weak B̈uchi gameG−(ΓC). (Note thatΓC is necessarily finite, even though
C may be infinite.)

E Proof of Theorem 5 (Complexity)

(i). The case of alternating trivial automata is proved in [14].Here we deal with the
other two. The upper bound follows from then-EXPTIME completeness of modal mu-
calculus / APT model checking [2]. The lower bound for alternating weak automata
follows from that for alternating trivial automata, since it subsumes the latter. In the
following we establish then-EXPTIME hardness for the alternating co-trivial case.

Engelfriet [19] proved a hierarchy theorem for higher-order pushdown alternating
word automata (AWA):

Theorem 10 (Engelfriet 1991).For eachk ≥ 0, the class of finite-word languages
recognized by order-k pushdown AWA is

⋃
d>1DTIME (expkdn).

We use the Theorem to show that the acceptance problem of alternating co-trivial
automata for trees generated by order-k safe (and hence arbitrary) recursion schemes is
k-EXPTIME hard.

Fix an input alphabetA. An order-k pushdown AWAis given by a 7-tuple

A = 〈P, λ, p0, Γ, A,∆, F 〉

where the labelling functionλ : P → {E,A} partitions the state-setP into E-states
andA-states,p0 ∈ P is the start state,Γ is the stack alphabet,∆ ⊆ P × Γ × (A ∪
{ǫ})× P × Opk is the transition relation,Opk is the set of order-k stack actions, and
F ⊆ P is the set of final states. We assume that for everyp andγ, if there are someq
andθ such that(p, γ, q, ǫ, θ) ∈ ∆, then it isnot the case that there areq′, θ′ anda ∈ A
such that(p, γ, q′, a, θ′) ∈ ∆. I.e. no configuration can have both anA-transition and
anǫ-transition. Recall that a wordw ∈ A∗ is acceptedby an AWAA if there is a finite
run-tree overw such that every leaf is a final state.

32 Lester, Neatherway, Ong and Ramsay

For our purpose it is convenient to define the acceptance of a word by an order-k
pushdown AWAA in a game setting. Take a wordw = w1 · · ·w|w| ∈ A∗ (with each
wi ∈ A), we define theacceptance parity gameAcc(w,A) as follows. TheE-nodesare
elements of the setPE × [1..|w|] × Stackk(Γ) whereStackk(Γ) is the set of order-k
stacks over the stack alphabetΓ ; similarly for theA-nodes. The edge-set is defined as
follows: Take a node(p, i, s).

– For each(p, top1 s, a, p
′, θ) ∈ ∆ wherea = wi ∈ A, there is an edge from(p, i, s)

to (p′, i+ 1, θ(s)).
– For each(p, top1 s, ǫ, p

′, θ) ∈ ∆, there is an edge from(p, i, s) to (p′, i, θ(s)).

Further we designate every node of the form(p, |w|, s) wherep ∈ F as anaccept
node i.e. winning forÉloı̈se, and every terminal node (i.e. no outgoing edges) that is
not an accept state as arejectnode i.e. losing foŕEloı̈se. The priority functionΩ is the
constantly-1 function. (ThuśEloı̈se loses every infinite play.) We say that a wordw is
acceptedby the pushdown AWAA just if Éloı̈se has a winning strategy in the game
Acc(w,A) from the start node(p0, 1,⊥k) where⊥k is the emptyk-stack.

We can express the gameAcc(w,A) as a parity gameG = 〈λ′, Ω′〉 defined on the
configuration graph of an order-k pushdown system (PDS)

Rw,A = 〈P × [1..|w|], (p0, 1), Γ,∆
′〉

where the transition relation∆′ ⊆ (P × [1..|w|])×Γ × (P × [1..|w|])×Opk is defined
as follows: leti, p, p′ andθ range over the appropriate sets

((p, i), γ, (p′, i+ 1), θ) ∈ ∆′ ⇐⇒ (p, γ, wi, p
′, θ) ∈ ∆

((p, i), γ, (p′, i), θ) ∈ ∆′ ⇐⇒ (p, γ, ǫ, p′, θ) ∈ ∆

The (immediate) accept and reject nodes remain the same. Thelabelling mapλ′ of the
parity gameG is given by the mapλ restricted to the first component of the control
state(p, i), and the priority functionΩ′ is the constantly-1 function.

Thanks to Emerson and Jutla [10], we have the following reduction:

Theorem 11. There is a (polynomial) reduction ofP1 to P2.

P1. Given a parity gameG over a directed graph, doeśEloı̈se have a winning strategy
from the start node?

P2. Given an APTAG and a directed graph, is the unravelling of the graph accepted
by the automaton?

A useful fact is that the unravelling of the configuration graph of an order-n PDS
is a ranked tree generated by an order-n PDA; one only has to note that an appropriate
labelling of the edges makes the order-n PDS graphdeterministic.

Lemma 9. SupposeR = 〈Γ,Q,∆, q0〉 is an order-n PDS. Lett be the tree obtained
by unravelling the configuration graph ofR and by labelling every node by the control
state and thetop1 stack symbol of the corresponding configuration. Thent is generated
by an order-n PDA R̃ of size polynomial in the size ofR.

Model Checking Liveness Properties of Higher-Order Functional Programs 33

Proof. Consider the following order-n PDA R̃ = 〈Σ,Γ,Q′, δ, q0〉 where we set:

– Trans = {(q, θ) | ∃p ∈ Q.∃a ∈ Γ . (p, a, q, θ) ∈ ∆} is the set of all transitions
that can be applied inR.

– Q′ = Q ∪ Trans
– Σ = Q × Γ is the set of shapes (we ignore the link in the case of CPDA) andthe

arity of (q, a) ∈ Σ is |{(q′, θ) | (q, a, q′, θ) ∈ ∆}|.
– For everyq ∈ Q, and everya ∈ Γ , δ(q, a) = ((q, a); (q1, θ1), · · · , (qk, θk)) where
{(q1, θ1), · · · , (qk, θk)} = {(q′, θ) | (q, a, q′, θ) ∈ ∆}.

– For every(q, θ) ∈ Trans, and everya ∈ Γ , δ((q, θ), a) = (q, θ).

Then one easily checks that̃R generatest.

Theorem 12 (Knapik et al. [20]).Fix a ranked alphabet, and letk ≥ 0. Order-k safe
recursion schemes and order-k pushdown tree automata generate the same class of
ranked trees. Further there are polynomial inter-translations between the formalisms.

We can now prove the desired result.

Theorem 13. LetG be an order-k recursion scheme, andA be an alternating co-trivial
automaton. The problem of whether[[G]] is accepted byA is k-EXPTIME hard.

Proof. Fix ak ≥ 1 and ad > 1. By Theorem 10, there is an order-k pushdown AWAA
and somew ∈ A∗ such that it takes time at leastexpkd|w| to decide whetheŕEloı̈se has
a winning strategy in the acceptance gameAcc(w,A), which can be viewed as a parity
gameG (say) over the configuration graph of the order-k PDSRw,A. By Lemma 9 and
Theorem 11, the solvability ofG overRw,A is reducible to the question of whether

the APTAG accepts the tree generated by the order-k PDA R̃w,A. By Theorem 12, let

Sw,A be the order-k safe recursion scheme that generates the same tree as̃Rw,A. Note
thatAG has a trivial acceptance condition – every node has priority1. Hence, deciding
whetherAG accepts the tree generated by the order-k safe recursion schemeSw,A takes
time at leastexpkd|w|.

(ii). If A is an APT, then the complement of the languageL(A) is also recognized
by an APT which is writtenA. Kobayashi observed that in caseA is deterministic
trivial, A is a disjunctive APT [7]. The(n − 1)-EXPTIME decidability then follows
from the(n − 1)-EXPTIME completeness of the disjunctive APT acceptance problem
for trees generated by order-n recursion schemes [14]. The same argument works for
the case of deterministic weak automata (and hence also for deterministic co-trivial).
Take a deterministic weak automatonA with a priority functionΩ. In A, which is a
disjunctive APT, the priority mapΩ is the inversion ofΩ. ThusA accepts a treet just
if there is no run-tree ofA over t (which is equivalent to the existence of an “error
path” w.r.t.A), or the run-tree ofA over thet has an infinite path in which 1 is the
infinitely occurring priority. The(n − 1)-EXPTIME hardness for deterministic weak
and deterministic trivial automata follow from the(n− 1)-EXPTIME completeness of
the Reachability Problem [14].

34 Lester, Neatherway, Ong and Ramsay

F An efficient intersection type system with subtypingλA
∧,≤

Kobayashi has shown in [7] that to make verification of recursion schemes at higher-
orders tractable, even for trivial automata checking, it isessential to apply two type-
based optimisations during inference. The first optimisation is a kind of symmetry re-
duction of the search space, in which only intersection types in a subtype-canonical
form (with respect to the standard notion of subtyping on intersection types) are vis-
ited by the search. The optimisation carries its own cost: inorder to type the canonical
forms arising from the algorithm, the systemλA

∧ must be extended to allow subtype
reasoning.

Whilst we desire the additional flexibility of subtyping in order to perform symme-
try reduction, we also wish to minimise the size (and computation time) ofTEnvΓ (F :
τ) for each bindingF : τ . In order to strike the right balance, we present a new type
systemλ

A
∧,≤, which consists of replacing the rules (APP) and (ABS) of λA

∧ with the
following:

∧
j∈Ii

θij ≤
∧
Si for eachi ∈ {1, · · · , n}

Γij ⊢ ti : θij for eachi ∈ {1, · · · , n}, j ∈ Ii

{ξ :
∧
S1 → · · · →

∧
Sn → θ} ∪

⋃n
i=1

⋃
j∈Ii

Γij ⊢ ξ t1 · · · tn : θ
(L-A PP)

Γ, xi1 :
∧
Si1 , · · · , xir :

∧
Sir ⊢ t : θ FVar(t) = {xi1 , · · · , xir}

Γ ⊢ λx1 · · ·xn.t :
∧
S1 → · · · →

∧
Sn → θ

(L-A BS)

in whichσ ≤ τ asserts the usual intersection subtype relation between typesσ andτ .
The system is a compromise between allowing sufficient subtype reasoning to type

the canonical forms arising from the model checking algorithm and constraining the
structure of type derivations so that they are more amenableto proof search. The key to
the latter is that the system possesses a strong form of the subformula property. We say
that a typeσ is asuffixof a typeτ just if τ is of the form

∧
S1 → · · · →

∧
Sk → σ for

somek ≥ 0.

Lemma 10 (λA
∧,≤ Suffix Property). If the judgementΓ ⊢ R(F) : τ is derivable for

someF : τ in Γ whereR(F) = λx : θ.t, then, for every (proper) subderivation with
some goal judgement∆ ⊢ s : σ, the typeσ is a suffix of some type bound inΓ ∪{x : θ}.

A consequence of the property is that, given a type environmentΓ and a termt, it
is straightforward to compute the set of valid type judgements fors under subsets ofΓ ,
which we denoteTΓ (s). That is, given type environment∆ and intersection typeθ:

(∆, θ) ∈ TΓ (s) ⇐⇒ ∆ ⊆ Γ ∧ ∆ ⊢ s : θ

From TΓ (s), it is easy to deriveFnw(Γ) andTEnvΓ (letting s = R(F) for each
non-terminal symbolF), which allow for the computation of the fixpoint and the con-
struction of the game graph respectively.

Given a purely applicative terms := ξ t1 · · · tn, we defineTΓ (s) by a recursive
procedure as follows. For ease of exposition, we abuse notation to writeξ : θ ∈ Γ to

Model Checking Liveness Properties of Higher-Order Functional Programs 35

indicate thatξ : θ is a valid conclusion either by the (TERM) rule (in caseξ is a terminal
symbol) or by the (VAR) rule (in caseξ is a non-terminal or variable symbol).

(
{ξ :

∧
S1 → · · · →

∧
Sn → θ} ∪

⋃n
i=1

⋃
j∈Ii

Γij , θ
)

∈ TΓ (ξ t1 · · · tn)

⇐⇒ {
ξ :

∧
S1 → · · · →

∧
Sn → θ ∈ Γ ∧

∀i ∈ {1, · · · , n} . {(Γij, θij) | j ∈ Ii} ⊆ TΓ (ti) ∧
∧

j∈Ii
θij ≤

∧
Si.

Observe that, owing to the suffix property, the computation of TΓ (s) need only
consider types inΓ and not all those types in the upward closure ofΓ under≤ (which
would be disastrous for the construction of the game graph).All the types that occur on
the right hand side of the defining equation are either derived from a recursive call or
themselves belong to the environmentΓ .

Typing judgement incorporating subtyping is necessary

Consider the higher order recursion schemeG = (Σ,N ,R, S) with terminalsΣ and
non-terminalsN given by (left and right columns respectively):

a : o → o → o S : o
b : o → o F : ((o → o) → o) → o
c : o → o G : (o → o) → o
i : o M : o → o

and production rulesR given by:

S → F G
F f → a (f b) (f M)
Gg → g i
M x → a (b x) (c x)

Furthermore, fix the following deterministic trivial automatonA = (Σ,Q, δ, q0) whose
states areQ = {q0, q1} and whose transition function,δ, is given by:

q0
a

→ q0 q0 q0
b

→ q0 q0
i

→ ǫ q0
c

→ q1 q1
t

→ ǫ

It should be clear thatA accepts[[G]]. Yet the algorithm will produce a type en-
vironmentΓ containingF : ((q0 ∧ q1 → q0) → q0) → q0 as the only binding for
non-terminalF . Consequently,G is not well typed underΓ in the type systemwithout
subtyping since, in particular, in this system it is not the case that:

Γ ⊢ R(F) : ((q0 ∧ q1 → q0) → q0) → q0

For such a statement to be derivable requires a derivable judgement

f : (q0 ∧ q1 → q0) → q0 ⊢ f : (q0 → q0) → q0

as a prerequisite.

36 Lester, Neatherway, Ong and Ramsay

G Optimisation

(i) Environment Canonisation.The typesin our fixpointΓ are already in a canon-
ical form. We canonise theenvironmentby finding, for each set of bindings to a non-
terminalFi :

∧
Si, the canonical form of the conjunction of those types

∧
Si. By

Corollary 2 in Appendix G.1, the resulting environment remains a fixpoint. Although
the reduction in number of bindings may be small, this can still have a significant effect
on the speed and memory usage of the computation by reducing the branching factor.

(ii) Bitset Environment Representation.All non-terminal bindings occurring in the
computation ofTΓ are drawn from the fixpointΓ , which is usually small. Therefore we
encode this portion of a type environment efficiently as a fixed-length bit string, each
bit signalling the presence or absence of a particular binding. As well as reducing the
average memory needed to store an environment, this also increases the speed of union
and subset operations on environments by reducing them to simple bit-level operations.

(iii) Environment Minimisation.Whenever a single environmentΓi is to be picked
from a set of possible environmentsΓ1, · · · , Γn, it is safe to consider just a minimal
subset; see Appendix G.2 for the justification. Here, a minimal subset of a setK of
environments is the smallestJ ⊆ K such that, for everyΓ ∈ K, there is a∆ ∈ J with
∆ ⊆ Γ . Such a subset can be found quickly when using a bitset representation.
In applying the rule (L-APP), we minimise the sets of environments in 4 places. This
drastically reduces the explosion of environments within this rule.

(iv) Subtype Minimisation.When applying the rule (L-APP) and picking for each
argument subtypes

∧
j∈Ii

θij ≤
∧
Si, it is sufficient to consider a minimal set of per-

missible subtypes; see Appendix G.2 for a discussion. This optimisation does not re-
move any environments that are not removed by environment minimisation. However,
it is still worthwhile as it reduces the explosion of environments at an intermediate stage
in the computation. The final row of the table demonstrates this optimisation being ap-
plied without environment minimisation; this shows that itis fairly effective by itself.

(v) Collapsing optimisation.If the tree generated by a recursion scheme is accepted
by a deterministic trivial automaton, and the tree is finite,then it is accepted by the cor-
responding co-trivial automaton. The single-state trivial automaton with transitions for
every terminal in an alphabet accepts every tree labelled with that alphabet. If the cor-
responding co-trivial automaton accepts a tree, then it must be finite. So to determine if
a co-trivial automaton accepts a tree, we show that a run-tree exists (as for a trivial au-
tomaton) and then check finiteness using the single-state co-trivial automaton, rewriting
all states in types being considered to a single type,q0.

G.1 Environment canonisation: soundness proof

We defineΓ ′ ≤ Γ to meandom(Γ) = dom(Γ ′), and for everyF : θ in Γ , there exists
F : θ′ in Γ ′ such thatθ′ ≤ θ.

Lemma 11. If Γ ⊢ ξ t1 · · · tn : τ (eachti is assumed to be an applicative term) and
Γ ′ ≤ Γ thenΓ ′ ⊢ ξ t1 · · · tn : τ ′ for someτ ′ ≤ τ .

Model Checking Liveness Properties of Higher-Order Functional Programs 37

Proof. Let θ =
∧
S1 → · · · →

∧
Sn → τ , and supposeξ : θ is inΓ . Letθ′ =

∧
S′
1 →

· · · →
∧
S′
n → τ ′, and supposeξ : θ′ is in Γ ′ with θ′ ≤ θ. I.e.τ ′ ≤ τ , and for eachi,∧

Si ≤
∧
S′
i. From the assumption, we have:

(i) for eachi, for eachj ∈ Ii, Γij ⊢ ti : θij
(ii) for eachi,

∧
j∈Ii

θij ≤
∧
Si

(iii) Γ = {ξ : θ} ∪
⋃

i

⋃
j∈Ii

Γij .

For eachi andj, chooseΓ ′
ij ⊆ Γ ′ such thatΓ ′

ij ≤ Γij . It follows from (i) and the
Induction Hypothesis that for eachi andj, Γ ′

ij ⊢ ti : θ
′
ij , for someθ′ij ≤ θij . It follows

from (ii) that for eachi,
∧

j∈Ii
θ′ij ≤

∧
S′
i. SetΓ ′ := {ξ : θ′} ∪

⋃
i

⋃
j∈Ii

Γ ′
ij . Then,

Γ ′ ≤ Γ , and by (L-APP), we haveΓ ′ ⊢ ξ t1 · · · tn : τ ′ as required.

Corollary 1. If Γ ⊢ R(H) : σ andΓ ′ ≤ Γ thenΓ ′ ⊢ R(H) : σ.

Proof. Supposeσ =
∧
S1 → · · · →

∧
Sn → q, R(H) = λx1 · · ·xn.t andFVar(t) =

{xi1 , · · · , xik}. Then,

Γ, xi1 :
∧

Si1 , · · · , xik :
∧

Sik ⊢ t : q.

SinceΓ ′, xi1 :
∧
Si1 , · · · , xik :

∧
Sik ≤ Γ, xi1 :

∧
Si1 , · · · , xik :

∧
Sik , it follows

from Lemma 11 thatΓ ′, xi1 :
∧
Si1 , · · · , xik :

∧
Sik ⊢ t : q, and so,Γ ′ ⊢ R(H) : σ.

Corollary 2. If Γ is aFnw-fixpoint and{F : θ, F : θ′} ⊆ Γ with θ′ ≤ θ thenΓ \ {F :
θ} is also aFnw-fixpoint.

Proof. Take a bindingG : α in Γ \ {F : θ}. SinceΓ is aFnw-fixpoint,∆ ⊢ R(H) : α
is provable for some∆ ⊆ Γ . Let ∆′ be obtained from∆ by replacing the binding
F : θ by F : θ′. Since∆′ ≤ ∆, thanks to Corollary 1, we have∆′ ⊢ R(H) : α. As
∆′ ⊆ (Γ \ {F : θ}), Γ \ {F : θ} is also aFnw-fixpoint.

G.2 Optimising TΓ : subset minimalisation

The motivation for this optimisation stems from the observation that in the weak Büchi
game derived fromTΓ , certain edges fromE-nodes can be safely removed. Namely, if
there are edges from anE-node(F : θ) to Γ andΓ ′ with Γ ⊆ Γ ′, then remove the
edge toΓ ′. (If Abelard can win fromΓ , then he can also win fromΓ ′, as it offers him
more options for his next move. So there is never any reason for Éloı̈se to playΓ ′ when
she can playΓ . Hence it is safe to remove the edge toΓ ′.) We aim to use this idea to
construct an optimised version ofTΓ , Topt

Γ .
Consider the computation ofTΓ (ξ t1 · · · tn), looking specifically at a single argu-

ment termtk. LetU = {U1, . . . , Um} be the set of all setsUi, such that
∧
Ui ≤

∧
Sk

and for eachθ ∈ Ui there exists aΞ ⊆ Γ such that(Ξ, θ) ∈ TΓ (tk). To defineTopt
Γ ,

we consider a subsetU = {Ux1
, · · · , Uxl

} of U that is:

(i) complete: for everyi ∈ [1,m] there exists aj ∈ [1, l] such thatUxj
⊆ Ui;

(ii) minimal: for eachj ∈ [1, l], if for some i ∈ [1,m] we haveUi ⊆ Uxj
then

Ui = Uxj
.

38 Lester, Neatherway, Ong and Ramsay

Note that ifUi = ∅ for somei thenU = {∅}.
To see the effect of the choice ofU , consider the construction of the resulting envi-

ronments. SupposeUy ∈ U = {θ1, · · · , θp} with:

{∆ | (∆, θ1) ∈ TΓ (tk)} = {∆11, · · · , ∆1x1
} = D1

...
...

{∆ | (∆, θp) ∈ TΓ (tk)} = {∆p1, · · · , ∆1xp
} = Dp

Set{∆1, · · · , ∆z} = {
⋃p

j=1 Θj | (Θ1, · · · , Θp) ∈ D1×· · ·×Dp}. Let{∆′
1, · · · , ∆

′
z′}

be the corresponding set of type environments constructed in the same way fromUz ∈
U , with Uz ⊆ Uy witnessing the completeness ofU . As Uz ⊆ Uy, for eachj ∈ [1, z]
there exists ani ∈ [1, z′] such that∆′

i ⊆ ∆j .
We show, by induction on purely applicative termst, that for everyt, θ and∆, if

(∆, θ) ∈ TΓ (t) then for some∆′ ⊆ ∆, (∆′, θ) ∈ T
opt
Γ (t). The base case is obvious.

Write τ =
∧
S1 → · · · →

∧
Sn → θ. Suppose({ξ : τ} ∪

⋃n
i=1

⋃
j∈Ii

Γij , θ) ∈
TΓ (ξ t1 · · · tn). By definition, for eachi ∈ [1, n] there exists{θij | j ∈ Ii} such
that

∧
j∈Ii

θij ≤
∧
Si, and for eachi and j, (Γij , θij) ∈ TΓ (ti). By the induc-

tion hypothesis, for eachi ∈ [1, n] and j ∈ Ii, there existsΓ ′
ij ⊆ Γij such that

(Γ ′
ij , θij) ∈ T

opt
Γ (ti). Then, by definition ofTopt

Γ , for eachi, there existsI−i ⊆ Ii

such that
∧

j∈I−

i
θij ≤

∧
Si. Thus({ξ : τ} ∪

⋃n
i=1

⋃
j∈I−

i
Γ ′
ij , θ) ∈ T

opt
Γ (ξ t1 · · · tn).

We note that{ξ : τ} ∪
⋃n

i=1

⋃
j∈I−

i
Γ ′
ij ⊆ {ξ : τ} ∪

⋃n
i=1

⋃
j∈Ii

Γij as required.

As an immediate consequence, we have soundness of the optimisation: for each
(F : θ) in Γ , and for each(∆, θ) ∈ TΓ (R(F)), there exists(∆′, θ) ∈ T

opt
Γ (R(F))

such that∆′ ⊆ ∆.

H Examples

H.1 Intercept

For this example, we take a network-oriented OCaml program.This program reads an
arbitrary amount of data from a network socket into a queue and is then responsible for
forwarding the data on to another socket. The full program can be found at [21] and an
abstracted form in ML-like syntax as found elsewhere in the paper follows.

let rec g y n = for i in 1 to n do write(y) ; done ; close(y)
let rec f x y n = if b then read(x) ; f(x,y,n+1)

else close(x) ; g(y,n)
let t = open_out "socket2" in
let s = open_in "socket1" in f(s,t,0)

We can then construct a RUL program via lambda-lifting and CPS transformation.

Model Checking Liveness Properties of Higher-Order Functional Programs 39

S = newr C1

C1 x = neww (C2 x)
C2 x y = F xy Zero ⋆

F x y n k = if∗ (accread x (F xy (Succ n) k)) (accclose x (Gy n k)
G y n k = n (accwrite y) (accclose y k)
Zero f x = x

Succ n f x = f (n f x)

For this program it would be useful to confirm that if the “in” socket stops trans-
mitting data then the “out” socket is eventually closed (AG close in ⇒ AF closeout).
Given that this example property is slightly more complicated, requiring interplaybe-
tweenresources, a slightly altered transformation to HORS is required that differentiates
between operations on the two resources, while also unconditionally instantiating both
resources. Given this fixed number of resources it is possible to extend the alphabet in
this way:

S → Newr C1

C1 x → Neww (C2 x)
C2 x y → F xy Zero end

F xy n k → br (Read x (F xy (Succ n) k))
(Closer x (Gy n k)

Gy n k → n (Write y) (Closew y k)
I x y → x y
K xy → y

Newr k → newr (k I)
Neww k → neww (k I)

Closer x k → x closer k
Closew x k → x closew k
Read x k → x read k
Write x k → xwrite k
Zero f x → x

Succ n f x → f (n f x)

The property may then be specified as the AWTA = 〈Σ, {q0, qf}, δ, q0, {q0 7→
0, qf 7→ 1}〉. δ is defined below (whereq ∈ {q0, qf} and∗ ∈ {newr , neww , read ,write}):

(q, ∗) 7→ (1, q)
(q, br) 7→ (1, q) ∧ (2, q)

(q0, closer) 7→ (1, qf) ∧ (1, q0)
(q0, closew) 7→ (1, q0)
(qf , closer) 7→ (1, qf)
(qf , closew) 7→ t

We can see that theAG part of the property is handled by the “(q0, closer)” transi-
tion, which spawns an additional copy of the automaton to check thatAF closew holds
from this state.

40 Lester, Neatherway, Ong and Ramsay

H.2 Boolean

This example was chosen to demonstrate that model-checkingof first-order boolean
programs can be performed using this method. We take as inputthe following small C
function:

#include <assert.h>
void foo(int x, int y, int z, int w)
{

do {
z = 0;
x = y;
if (w) {

x++;
z = 1;

}
} while (x!=y);

assert (z==0);
}

Through standard predicate abstraction, taking the predicate set{x = y, w 6= 0, z =
0}, we obtain a boolean program:

decl x_eq_y;
decl w_neq_0;
decl z_eq_0;

void main() begin
x_eq_y := *;
w_neq_0 := *;
z_eq_0 := *;

loop_start:
z_eq_0 := 1;
x_eq_y := 1;
if(w_neq_0) then
x_eq_y := 0;
z_eq_0 := 1;

fi;
if(!x_eq_y) then
goto loop_end;

fi;
goto loop_start;

loop_end:
assert (z_eq_0);

end

We can perform a literal translation to HORS by modelling thestate as a number of
formal parameters passed from one line in the boolean program (or rule in the HORS)
to the next:

Model Checking Liveness Properties of Higher-Order Functional Programs 41

S → L1 1

L1 1 → br (L1 2 True) (L1 2 False)
L1 2 x → br (L1 3 xTrue) (L1 3 xFalse)

L1 3 x y → br (L2 x yTrue) (L2 x y False)
L2 x y z → L3 x yTrue
L3 x y z → L4 True y z
L4 x y z → y (L5 x y z) (L7 x y z)
L5 x y z → L6 False y z
L6 x y z → L7 x yTrue
L7 x y z → x (L9 x y z) (L8 x y z)
L8 x y z → L10 x y z
L9 x y z → L2 x y z

L10 x y z → z end fail

True x y → x
False x y → y

Here thefail terminal signals failure of the assertion, and therefore weonly need
to check that it is never encountered. This can be done using the trivial automaton
A = 〈Σ, {q0}, {(q0, br) 7→ q0 q0, (q0, end) 7→ t}, q0, {q0 7→ 0}〉.

H.3 Imperative

This example allows us to show a different approach to verifying the following small
imperative program used as running example by Cooket al. [15].

while(*) {
x := 1;
n := *;
while(n>0) {
n := n - 1;

}
x := 0;

}
while(1) {}

Using Church numerals as in Section H.1 we can model thewhile loop and obtain
a fairly direct translation:

S → br EnterLoop end

EnterLoop → set x one (IncCounter Zero (Loop end))
IncCounter n f → br (RunLoop n f) (IncCounter (Succ n) f)

RunLoop n f → n decr (set x zero f)
Zero f x → x

Succ n f x → f (n f x)
Loop k → loop (Loop k)

42 Lester, Neatherway, Ong and Ramsay

The suggested property isϕ = AG[(x = 1) ⇒ AF (x = 0)], a CTL formula that we
can check using the automatonA = 〈Σ, {q0, qr, qc}, δ, q0, {q0 7→ 0, qr 7→ 1, qc 7→ 0}〉.
δ is defined below (whereq ∈ {q0, qr}):

(q0, set x one) 7→ q0
(q0, set x zero) 7→ qc

(q0, end) 7→ t

(q0, decr) 7→ qr
(q, br) 7→ q q

(qr, set x one) 7→ qc
(qr, decr) 7→ qr
(qc, loop) 7→ qc

