
Automatic Verification of Erlang-Style
Concurrency

Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

University of Oxford

Abstract. This paper presents an approach to verify safety properties of
Erlang-style, higher-order concurrent programs automatically. Inspired by Core
Erlang, we introduce λActor, a prototypical functional language with pattern-
matching algebraic data types, augmented with process creation and asyn-
chronous message-passing primitives. We formalise an abstract model of λActor
programs called Actor Communicating System (ACS) which has a natural in-
terpretation as a vector addition system, for which some verification prob-
lems are decidable. We give a parametric abstract interpretation framework
for λActor and use it to build a polytime computable, flow-based, abstract
semantics of λActor programs, which we then use to bootstrap the ACS con-
struction, thus deriving a more accurate abstract model of the input program.
We evaluate the method which we implemented in the prototype Soter. We
find that in practice our abstraction technique is accurate enough to verify an
interesting range of safety properties. Though the ACS coverability problem
is Expspace-complete, Soter can analyse non-trivial programs in a matter of
seconds.

Keywords: Erlang, Infinite-state Systems Verification, Petri Nets.

1 Introduction

This paper concerns the verification of concurrent programs written in Erlang.
Originally designed to program fault-tolerant distributed systems at Ericsson in
the late 80s, Erlang is now a widely used, open-sourced language with support
for higher-order functions, concurrency, communication, distribution, on-the-fly
code reloading, and multiple platforms [3,2]. Largely because of a runtime system
that offers highly efficient process creation and message-passing communication,
Erlang is a natural fit for programming multicore CPUs, networked servers,
parallel databases, GUIs, and monitoring, control and testing tools.

The sequential part of Erlang is a higher order, dynamically typed, call-by-
value functional language with pattern-matching algebraic data types. Following
the actor model [1], a concurrent Erlang computation consists of a dynamic net-
work of processes that communicate by message passing. Every process has a
unique process identifier (pid), and is equipped with an unbounded mailbox.
Messages are sent asynchronously in the sense that send is non-blocking. Mes-
sages are retrieved from the mailbox, not FIFO, but First-In-First-Firable-Out
(FIFFO) via pattern-matching. A process may block while waiting for a message
that matches a certain pattern to arrive in its mailbox. For a quick and highly
readable introduction to Erlang, see Armstrong’s CACM article [2].

Challenges. Concurrent programs are hard to write. They are just as hard to
verify. In the case of Erlang programs, the inherent complexity of the verification
task can be seen from several diverse sources of infinity in the state space.

2 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

(∞ 1) General recursion requires a (process local) call-stack.

(∞ 2) Higher-order functions are first-class values; closures can be passed as
parameters or returned.

(∞ 3) Data domains, and hence the message space, are unbounded: functions
may return, and variables may be bound to, terms of an arbitrary size.

(∞ 4) An unbounded number of processes can be spawned dynamically.

(∞ 5) Mailboxes have unbounded capacity.

The challenge of verifying Erlang programs is that one must reason about the
asynchronous communication of an unbounded set of messages, across an un-
bounded set of Turing-powerful processes.

Our goal is to verify safety properties of Erlang-like programs automatically,
using a combination of static analysis and infinite-state model checking. To a
large extent, the key decision of which causes of infinity to model as accurately as
possible and which to abstract is forced upon us: the class consisting of a fixed set
of context-free (equivalently, first-order) processes, each equipped with a mailbox
of size one and communicating messages from a finite set, is already Turing
powerful [10]. Our strategy is thus to abstract (∞ 1), (∞ 2) and (∞ 3), while
seeking to analyse message-passing concurrency, assuming (∞ 4) and (∞ 5).

We consider programs of λActor, a prototypical functional language with
actor-style concurrency. λActor is essentially Core Erlang [5]—the official in-
termediate representation of Erlang code, which exhibits in full the higher-order
features of Erlang, with asynchronous message-passing concurrency and dynamic
process creation. With decidable infinite-state model checking in mind, we intro-
duce Actor Communicating System (ACS), which models the interaction of an
unbounded set of communicating processes. An ACS has a finite set of control
states Q, a finite set of pid classes P , a finite set of messages M , and a finite

set of transition rules. An ACS transition rule has the shape ι : q
`−→ q′, which

means that a process of pid class ι can transition from state q to state q′ with
(possible) communication side effect `, of which there are four kinds, namely,
(i) the process makes an internal transition (ii) it extracts and reads a message
m from its mailbox (iii) it sends a message m to a process of pid class ι′ (iv) it
spawns a process of pid class ι′. ACS models are infinite state: the mailbox of a
process has unbounded capacity, and the number of processes in an ACS may
grow arbitrarily large. However the set of pid classes is fixed, and processes of
the same pid class are not distinguishable.

An ACS can be interpreted naturally as a vector addition system (VAS),
or equivalently Petri net, using counter abstraction. We consider a particular
counter abstraction of ACS, called VAS semantics, which models an ACS as
a VAS distinguishing two kinds of counters. A counter named by a pair (ι, q)
counts the number of processes of pid class ι that are currently in state q; a
counter named by (ι,m) counts the sum total of occurrences of a message m
currently in the mailbox of p, where p ranges over processes of pid class ι. Using
this abstraction, we can conservatively decide properties of the ACS using well-
known decision procedures for VAS.

Automatic Verification of Erlang-Style Concurrency 3

Parametric, Flow-based Abstract Interpretation. The starting point of our ver-
ification pathway is the abstraction of the sources of infinity (∞ 1), (∞ 2) and
(∞ 3). Methods such as k-CFA [35] can be used to abstract higher-order re-
cursive functions to a finite-state system. Rather than ‘baking in’ each type of
abstraction separately, we develop a general abstract interpretation framework
which is parametric on a number of basic domains. In the style of Van Horn and
Might [36], we devise a machine-based operational semantics of λActor which is
‘generated’ from the basic domains of Time, Mailbox and Data. We show that
there is a simple notion of sound abstraction of the basic domains whereby every
such abstraction gives rise to a sound abstract semantics of λActor programs
(Theorem 1). Further if a given sound abstraction of the basic domains is fi-
nite and the associated auxiliary operations are computable, then the derived
abstract semantics is finite and computable.

Generating an ACS. We show that a sound ACS (Theorem 3) can be con-
structed in polynomial time by bootstrapping from the 0-CFA-like abstract se-
mantics. Further, the dimension of the resulting ACS is polynomial in the length
of the input λActor program. The idea is that the 0-CFA-like abstract (transi-
tion) semantics constitutes a sound but rough analysis of the control-flow of the
program, which takes higher-order computation into account but communicating
behaviour only minimally. The bootstrap construction consists in constraining
these rough transitions with guards of the form ‘receive a message of this type’
or ‘send a message of this type’ or ‘spawn a process’, thus resulting in a more
accurate abstract model of the input λActor program in the form of an ACS.

Evaluation. To demonstrate the feasibility of our verification method, we have
constructed a prototype implementation called Soter. Our empirical results show
that the abstraction framework is accurate enough to verify an interesting range
of safety properties of non-trivial Erlang programs.

Outline. In Section 2 we define the syntax of λActor and informally explain
its semantics with the help of an example program. In Section 3, we introduce
Actor Communicating System and its VAS semantics. In Section 4 we present a
machine-based operational semantics of λActor and then, in Section 5, we develop
a parametric abstract interpretation from it. In Section 6, we use the analysis
to bootstrap the ACS construction. In Section 7 we present the experimental
results based on our tool implementation Soter, and discuss the limitations of
our approach. We omit proofs for lack of space; they can be found in the extended
version of the paper [12].

Notation. We write A∗ for the set of finite sequences of elements of the set A,
and ε for the null sequence. Let a ∈ A and l, l′ ∈ A∗, we overload ‘·’ so that it
means insertion at the top a · l, at the bottom l · a or concatenation l · l′. We
write li for the i-th element of l. The set of finite partial functions from A to B
is denoted A ⇀ B. we define f [a 7→ b] := (λx. if (x=a) then b else f(x)); [] is
the everywhere undefined function.

4 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

2 A Prototypical Fragment of Erlang

In this section we introduce λActor, a prototypical untyped functional language
with actor concurrency. λActor is inspired by single-node Core Erlang [5] without
built-in functions and fault-tolerant features. It exhibits in full the higher-order
features of Erlang, with message-passing concurrency and dynamic process cre-
ation. The syntax of λActor is defined as follows:

e ∈ Exp ::= x | c(e1, . . . , en) | e0(e1, . . . , en) | fun

| letrec f1(x1, . . . , xk1)=e1. · · · fn(x1, . . . , xkn)=en. in e

| case e of pat1 → e1; . . . ; patn → en end

| receive pat1 → e1; . . . ; patn → en end

| send(e1, e2) | spawn(e) | self ()

fun ::= fun(x1, . . . , xn) → e

pat ::= x | c(pat1, . . . , patn)

where c ranges over a fixed finite set Σ of constructors.
For ease of comparison we keep the syntax close to Core Erlang and use

uncurried functions, delimiters, fun and end. We write ‘ ’ for an unnamed un-
bound variable; using symbols from Σ, we write n-tuples as {e1, . . . , en}, the
list constructor cons as [|] and the empty list as [] . Sequencing (e1 , e2) is a
shorthand for (fun()→e2)(e1) and we we omit brackets for nullary construc-
tors. The character ‘%’ marks the start of a line of comment. Variable names
begin with an uppercase letter. We write fv(e) for the free variables of an ex-
pression and we define a λActor program P to be a closed λActor expression. We
associate a unique label l to each sub-expression e of a program and indicate
that e is labelled by l by writing ` : e. Take a term ` : (`0 : e0(`1 : e1, . . . , `n : en)),
we define `.argi := `i and arity(`) := n.

To illustrate λActor’s concurrency model we sketch a small-step reduction
semantics here. The rewrite rules for function application and λ-abstraction are
identical to call-by-value λ-calculus; we write evaluation contexts as E[]. A state
of the computation of a λActor program is a setΠ of processes running in parallel.
A process 〈e〉ιm, identified by the pid ι, evaluates an expression e with mailbox m
holding unconsumed messages. Purely functional reductions performed by each
process are independently interleaved. A spawn construct, spawn(fun()→e),
evaluates to a fresh pid ι′ and creates a new process 〈e〉ι′ε , with pid ι′:

〈E[spawn(fun()→e)]〉ιm ‖ Π −→ 〈E[ι′]〉ιm ‖ 〈e〉ι
′

ε ‖ Π

A send construct, send(ι, v), evaluates to the message v with the side-effect of
appending it to the mailbox of the receiver process ι; thus send is non-blocking:

〈E[send(ι, v)]〉ι
′

m′ ‖ 〈e〉ιm ‖ Π −→ 〈E[v]〉ι
′

m′ ‖ 〈e〉ιm·v ‖ Π

The evaluation of a receive construct, receive p1 → e1 . . . pn → en end, will
block if the mailbox of the process in question contains no message that matches

Automatic Verification of Erlang-Style Concurrency 5

1 letrec
2 %

3 res start (Res) =
4 spawn(fun() → res free (Res)).
5 res free (Res) =
6 receive {lock, P}→
7 send(P, {acquired, self ()}),
8 res locked (Res, P)
9 end.

10 res locked (Res, P) =
11 receive
12 {req, P, Cmd}→
13 case Res(P, Cmd) of
14 {NewRes, ok}→
15 res locked (NewRes, P);
16 {NewRes, {reply, A}}→
17 send(P, {ans, self () , A}),
18 res locked (NewRes, P)
19 end;
20 {unlock, P}→ res free (Res)
21 end.
22 %

23 res lock (Q)=
24 send(Q, {lock, self ()}),
25 receive {acquired, Q}→ ok end.
26 res unlock (Q)=
27 send(Q, {unlock, self ()}).
28 res request (Q, Cmd) =
29 send(Q, {req, self () , Cmd}),
30 receive {ans, Q, X}→ X end.

31 res do (Q, Cmd) =
32 send(Q, {req, self () , Cmd}).
33 %

34 cell start () =
35 res start (cell (zero)).
36 cell (X) = fun(P, Cmd) →
37 case Cmd of
38 {write , Y}→ {cell (Y), ok};
39 read → {cell (X), {reply , X}}
40 end.
41 %

42 cell lock (C) = res lock (C).
43 cell unlock (C) = res unlock(C).
44 cell read (C) = res request (C, read).
45 cell write (C,X)=res do(C, {write, X}).
46 %

47 inc (C) =
48 cell lock (C),
49 cell write (C, {succ, cell read (C)}),
50 cell unlock (C).
51 add to cell (M, C) =
52 case M of
53 zero → ok;
54 {succ, M’}→
55 spawn(fun() → inc (C)),
56 add to cell (M’, C)
57 end.
58 %

59 in C = cell start () ,
60 add to cell (N, C).

Fig. 1. Locked Resource (running example)

any of the patterns pi. Otherwise, the first message m that matches a pattern,
say pi, is consumed by the process, and the computation continues with the
evaluation of ei. The pattern-matching variables in ei are bound by θ to the
corresponding matching subterms of the message m; if more than one pattern
matches the message, then the first in textual order is fired

〈E[receive p1 → e1 . . . pn → en end]〉ιm·m·m′ ‖ Π −→ 〈E[θei]〉ι
′

m·m′ ‖ Π;

Note that message passing is not First-In-First-Out but rather First-In-First-
Fireable Out (FIFFO): incoming messages are queued at the end of the mailbox,
and the message that a receive construct extracts is not necessarily the first.

Example 1 (Locked Resource). Figure 1 shows an example λActor program. The
code has three logical parts, which would constitute three modules in Erlang.
The first part defines an Erlang behaviour1 that governs the lock-controlled,
concurrent access of a shared resource by a number of clients. A resource is
viewed as a generic server implementing the locking protocol, parametrised on

1 I.e. a module implementing a general purpose protocol, parametrised over another
module containing the code specific to a particular instance. Note that we simulate
modules with higher-order parameters, which is general enough to express in full the
dynamic module system of Erlang.

6 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

a function that specifies how to react to requests. Note the use of higher-order
arguments and return values. The function res start creates a new process that
runs an unlocked (res free) instance of the resource. When unlocked, a resource
waits for a {lock , P} message to arrive from a client P. Upon receipt of such a
message, an acknowledgement message is sent back to the client and the control
is yielded to res locked . When locked (by a client P), a resource can accept
requests {req,P,Cmd} from P—and from P only—for an unspecified command
Cmd to be executed. After running the requested command, the resource is
expected to return the updated resource handler and an answer, which may
be the atom ok, which requires no additional action, or a couple {reply , Ans}
which signals that the answer Ans should be sent back to the client. When an
unlock message is received from P the control is given back to res free . Note
that the mailbox matching mechanism allows multiple locks and requests to
be sent asynchronously to the mailbox of the locked resource without causing
conflicts: the pattern matching in the locked state ensures that all the pending
lock requests get delayed for later consumption once the resource gets unlocked.
The functions res lock , res unlock , res request , res do hide the protocol from
the user who can then use this API as if it was purely functional.

The second part implements a simple shared resource that holds a natural
number, which is encoded using the constructors {succ, } and zero, and allows
a client to read its value or overwrite it with a new one. Without lock messages,
a shared resource with such a protocol easily leads to inconsistencies.

The last part defines the function inc which accesses a locked cell to increment
its value. The function add to cell adds M to the contents of the cell by spawning
M processes incrementing it concurrently. Finally the entry-point of the program
sets up a process with a shared locked cell and then calls add to cell . Note that
N is a free variable; to make the example a program we can either close it by
setting N to a constant or make it range over all natural numbers with the
extension described in Section 5.

An interesting correctness property of this code is the mutual exclusion of
the lock-protected region (i.e. line 49) of the concurrent instances of inc.

3 Actor Communicating Systems

In this section we explore the design space of abstract models of Erlang-style
concurrency. We seek a model of computation that should capture the core con-
currency and asynchronous communication features of λActor and yet enjoys
the decidability of interesting verification problems. In the presence of pattern-
matching algebraic data types, the (sequential) functional fragment of λActor is
already Turing powerful [30]. Restricting it to a pushdown (equivalently, first-
order) fragment but allowing concurrent execution would enable, using very
primitive synchronization, the simulation of a Turing-powerful finite automaton
with two stacks. A single finite-control process equipped with a mailbox (re-
quired for asynchronous communication) can encode a Turing-powerful queue
automaton in the sense of Minsky. Thus constrained, we opt for a model of con-

Automatic Verification of Erlang-Style Concurrency 7

current computation that has finite control, a finite number of messages, and a
finite number of process classes.

Definition 1. An Actor Communicating System (ACS) A is a tuple 〈P,Q,M,
R, ι0, q0〉 where P is a finite set of pid-classes, Q is a finite set of control-states,
M is a finite set of messages, ι0 ∈ P is the pid-class of the initial process, q0 ∈ Q
is the initial state of the initial process, and R is a finite set of rules of the form

ι : q
`−→ q′ where ι ∈ P , q, q′ ∈ Q and ` is a label that can take one of four forms:

τ (local transition), ?m with m ∈ M (receive a message), ι′!m with ι′ ∈ P ,
m ∈M (send a message), νι′. q′′ with ι′ ∈ P and q′′ ∈ Q (spawn a new process
in pid-class ι′ starting from q′′).

Now we have to give ACS a semantics, but interpreting the ACS mailboxes
as FIFFO queues would yield a Turing-powerful model. Our solution is to apply
a counter abstraction on mailboxes: disregard the ordering of messages, but
track the number of occurrences of every message in a mailbox. Since we bound
the number of pid-classes, but wish to model dynamic (and hence unbounded)
spawning of processes, we apply a second counter abstraction on the control
states of each pid-class: we count, for each control-state of each pid-class, the
number of processes in that pid-class that are currently in that state.

For soundness, we need to make sure that such an abstraction contains all the
behaviours of the semantics with FIFFO mailboxes: if there is a matching term in
the mailbox, then the corresponding branch is non-deterministically fired. To see
the difference, take the ACS that has one process (named ι), three control states

q, q1 and q2, and two rules ι : q
?a−→ q1, ι : q

?b−→ q2. When equipped with a FIFFO
mailbox containing the sequence c a b, the process can only evolve from q to q1
by consuming a from the mailbox, since it can skip c but will find a matching
message (and thus not look further) before reaching the message b. In contrast,
the counter semantics would let q evolve non-deterministically to both q1 and q2,
consuming a or b respectively: the mailbox is abstracted to [a 7→ 1, b 7→ 1, c 7→ 1]
with no information on whether a or b arrived first. However, the abstracted
semantics does contain the traces of the FIFFO semantics.

The VAS semantics of an ACS is a state transition system equipped with
counters that support increment and decrement (when non-zero) operations.
Such infinite-state systems are known as vector addition systems (VAS).

Definition 2 (Vector Addition System). A vector addition system (VAS)
V is a pair (I,R) where I is a finite set of indices (called the places of the VAS)
and R ⊆ ZI is a finite set of rules. Thus a rule is just a vector of integers of
dimension |I|, whose components are indexed (i.e. named) by the elements of I.

The state transition system JVK induced by a VAS V = (I,R) has state-
set NI and transition relation {(v,v + r) | v ∈ NI , r ∈ R,v + r ∈ NI}. We write
v ≤ v′ just if for all i in I, v(i) ≤ v′(i).

The semantics of an ACS can now be given easily in terms of the underlying
vector addition system.

8 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Definition 3 (VAS semantics). The semantics of an ACS A = (P,Q,M,
R, ι0, q0) is the transition system induced by the VAS V = (I,R) where I =
P × (Q]M). Each ACS rule in R is translated into a VAS rule in R as follows:

ι : q
τ−→ q′ is the vector that decrements (ι, q) and increments (ι, q′), ι : q

?m−−→ q′

decrements (ι, q) and (ι,m) while incrementing (ι, q′), ι : q
ι′!m−−−→ q′ decrements

(ι, q) and increments both (ι, q′) and (ι′,m), ι : q
νι′. q′′−−−−→ q′ decrements (ι, q) while

incrementing both (ι, q′) and (ι′, q′′). Given a JVK-state v ∈ NI , the component
v(ι, q) counts the number of processes in the pid-class ι currently in state q, while
the component v(ι,m) is the sum of the number of occurrences of the message
m in the mailboxes of the processes of the pid-class ι.

While infinite-state, many non-trivial properties are decidable on VAS includ-
ing reachability, coverability and place boundedness; for more details see [14]. In
this paper we focus on coverability, which is Expspace-complete [33]: given two
states s and t, is it possible to reach from s a state t′ that covers t (i.e. t′ ≤ t)?

Which kinds of correctness properties of λActor programs can one specify by
coverability of an ACS? We will be using ACS to over-approximate the semantics
of a λActor program, so if a state of the ACS is not coverable, then it is not
reachable in any execution of the program. It follows that we can use coverability
to express safety properties such as: (i) unreachability of error program locations
(ii) mutual exclusion (iii) boundedness of mailboxes: is it possible to reach a state
where the mailbox of pid-class ι has more than k messages? If not we can allocate
just k memory cells for that mailbox.

4 An Operational Semantics for λActor

In this section, we define an operational semantics for λActor using a time-
stamped CESK* machine, following an approach by Van Horn and Might [36]. An
unusual feature of such machines are store-allocated continuations which allow
the recursion in a programs’s control flow and data structure to be separated
from the recursive structure in its state space.

A Concrete Machine Semantics. Without loss of generality, we assume that in
a λActor program, variables are distinct, and constructors and cases are only
applied to variables. The λActor machine defines a transition system on (global)
states s ∈ State := Procs × Mailboxes × Store. An element π of Procs :=
Pid ⇀ ProcState associates a process with its (local) state, and an element
µ of Mailboxes := Pid ⇀ Mailbox associates a process with its mailbox. We split
a store σ into two partitions Store := (VAddr ⇀ Value) × (KAddr ⇀ Kont)
each with its address space, to separate values and continuations. By abuse of
notation σ(x) shall mean the application of the first component when x ∈ VAddr
and of the second when x ∈ KAddr .

The local state q of a process is a tuple in ProcState := (ProgLoc] Pid) ×
Env × KAddr × Time consisting of (i) a pid, or a program location which is a
subterm of the program, labelled with its occurrence; whenever it is clear from

Automatic Verification of Erlang-Style Concurrency 9

Functional reductions

FunEval
if π(ι) = 〈` : (e0(e1, . . . , en)), ρ, a, t〉

b := newkpush(ι, π(ι))
then π′ = π[ι 7→ 〈e0, ρ, b, t〉]

σ′ = σ[b 7→ Arg0〈`, ε, ρ, a〉]
ArgEval
if π(ι) = 〈v, ρ, a, t〉
σ(a) = κ = Argi〈`, d0 . . . di−1, ρ

′, c〉
di := (v, ρ)
b := newkpop(ι, κ, π(ι))

then π′ = π[ι 7→ 〈`.argi+1, ρ
′, b, t〉]

σ′ = σ[b 7→ Argi+1〈`, d0 . . . di, ρ′, c〉]

Vars
if π(ι) = 〈x, ρ, a, t〉
σ(ρ(x)) = (v, ρ′)

then π′ = π[ι 7→ 〈v, ρ′, a, t〉]
Apply
if π(ι) = 〈v, ρ, a, t〉, arity(`) = n
σ(a) = κ = Argn〈`, d0 . . . dn−1, ρ′, c〉
d0 = (fun(x1 . . . xn) → e, ρ0) dn := (v, ρ)
bi := newva(ι, xi, res(σ, di), π(ι))
t′ := tick(`, π(ι))

then π′ = π[ι 7→ 〈e, ρ′[x1 → b1 . . . xn → bn], c, t′〉]
σ′ = σ[b1 7→ d1 . . . bn 7→ dn]

Fig. 2. Concrete Semantics rules for the functional primitives. The tables define the transition
relation s = 〈π, µ, σ, ϑ〉 → 〈π′, µ′, σ′, ϑ′〉 = s′ by cases; the primed components of the state
are identical to the non-primed components, unless indicated otherwise in the “then” part
of the rule. The meta-variable v stands for terms that cannot be further rewritten such as
λ-abstractions, constructor applications and un-applied primitives.

the context, we shall omit the label; (ii) an environment, which is a map from
variables to pointers to values ρ ∈ Env := Var ⇀ VAddr ; (iii) a pointer to a
continuation, which indicates what to evaluate next when the current evaluation
returns a value; (iv) a time-stamp, which will be described later.

Values are either closures d ∈ Value := Closure] Pid or pids Closure :=
ProgLoc×Env . Note that closures include both functions and constructor terms.
All the above domains are naturally partially ordered: ProgLoc and Var are
discrete partial orders, all others are defined by pointwise extension.

A mailbox is a finite sequence of values: m ∈ Mailbox := Value∗. We denote
the empty mailbox by ε. A mailbox is supported by two operations:

mmatch: pat∗ ×Mailbox × Env × Store → (N× (Var ⇀ Value)×Mailbox)⊥
enq: Value ×Mailbox → Mailbox

The function mmatch takes a list of patterns, a mailbox, the current environ-
ment and a store (for resolving pointers in the values stored in the mailbox)
and returns the index of the matching pattern, a substitution witnessing the
match, and the mailbox resulting from the extraction of the matched mes-
sage. To model Erlang-style FIFFO mailboxes we set enq(d,m) := m · d and
define mmatch(p1 . . . pn,m, ρ, σ) := (i, θ,m1 ·m2) such that m = m1 · d ·m2 with
∀d′ ∈ m1 and ∀j . matchρ,σ(pj , d

′) = ⊥, and θ = matchρ,σ(pi, d) with ∀j <
i . matchρ,σ(pj , d) = ⊥ where matchρ,σ(p, d) pattern-matches term d against
pattern p, using the environment ρ and store σ where necessary, and returns a
substitution if successful and ⊥ otherwise.

Evaluation Contexts as Continuations. Next we represent (in an inside-out man-
ner) evaluation contexts as continuations. A continuation consists of a tag in-
dicating the shape of the evaluation context, a pointer to a continuation repre-
senting the enclosing evaluation context, and, in some cases, a program location
and an environment. Thus κ ∈ Kont consists of the following constructs:

10 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Concurrency

Receive
if π(ι) = 〈e, ρ, a, t〉
e = receive p1 → e1 . . . pn → en end
mmatch(p1 . . . pn, µ(ι), ρ, σ) = (i, θ,m)
θ = [x1 7→ d1 . . . xk 7→ dk]
bj := newva(ι, xj , res(σ, dj), π(ι))
ρ′ := ρ [x1 7→ b1 . . . xk 7→ bk]

then π′ = π[ι 7→ 〈ei, ρ′, a, t〉]
µ′ = µ[ι 7→ m]
σ′ = σ[b1 7→ d1 . . . bk 7→ dk]

Self
if π(ι) = 〈 self (), ρ, a, t〉
then π′ = π[ι 7→ 〈ι, ρ, a, t〉]

Send
if π(ι) = 〈v, ρ, a, t〉 σ(a) = Arg2〈`, d, ι′, , c〉

d = (send,)
then π′ = π[ι 7→ 〈v, ρ, c, t〉]

µ′ = µ[ι′ 7→ enq((v, ρ), µ(ι′))]

Spawn
if π(ι) = 〈fun() → e, ρ, a, t〉 d = (spawn,)
σ(a) = Arg1〈`, d, ρ′, c〉 ι′ := newpid(ι, `, t)

then

π′ = π

[
ι 7→ 〈ι′, ρ′, c, t〉,
ι′ 7→ 〈e, ρ,∗, t0〉

]
µ′ = µ[ι′ 7→ ε]

Fig. 3. Concrete Semantic Rules for Concurrency primitives.

- Stop represents the empty context.
- Argi〈`, v0 . . . vi−1, ρ, a〉 represents the context E[v0(v1, . . . , vi−1, [], e′i+1, . . . ,
e′n)] where e0(e1, . . . , en) is the subterm located at `; ρ closes the terms ei+1,
. . . , en to e′i+1, . . . , e

′
n respectively; the address a points to the continuation

representing the enclosing evaluation context E.

Addresses, Pids and Time-Stamps. While the machine supports arbitrary con-
crete representations of time-stamps, addresses and pids, we present here an
instance based on contours [35] which shall serve as the reference semantics of
λActor, and the basis for the abstraction.

A way to represent a dynamic occurrence of a symbol is the history of the
computation at the point of its creation. We record history as contours which
are strings of program locations t ∈ Time := ProgLoc∗. The initial contour is
just the empty sequence t0 := ε, while the function tick: ProgLoc × Time →
Time updates the contour of the process in question by prepending the current
program location tick(`, t) := ` · t. Addresses for values b ∈ VAddr := Pid ×
Var × Data × Time are represented by tuples comprising the current pid, the
variable in question, the bound value and the current time stamp. Addresses
for continuations a, c ∈ KAddr := (Pid × ProgLoc × Env × Time)] {∗} are
represented by tuples comprising the current pid, program location, environment
and time; or ∗ which is the address of the initial continuation (Stop).

The data domain (δ ∈ Data) is the set of closed λActor terms; the function
res : Store×Value → Data resolves all the pointers of a value through the store σ,
returning the corresponding closed term res(σ, (e, ρ)) := e[x 7→ res(σ, σ(ρ(x))) |
x ∈ fv(e)] or, when the value is a pid it just returns it res(σ, ι) := ι.
We extract the relevant components from the context to generate new addresses:

newkpush : Pid × ProcState → KAddr

newkpush(ι, 〈`, ρ, , t〉) := (ι, `.arg0, ρ, t)

newkpop : Pid ×Kont × ProcState → KAddr

newkpop(ι, κ, 〈 , , , t〉) := (ι, `.argi+1, ρ, t) where κ = Argi〈`, . . . , ρ, 〉

Automatic Verification of Erlang-Style Concurrency 11

newva : Pid ×Var ×Data × ProcState → VAddr

newva(ι, x, δ, 〈 , , , t〉) := (ι, x, δ, t)

To enable data abstraction in our framework, the address of a value contains the
data to which the variable is bound: by making appropriate use of the embedded
information in the abstract semantics, we can fine-tune the data sensitivity of
our analysis.

Following the same scheme, pids (ι ∈ Pid) can be identified with the con-
tour of the spawn that generated them: Pid := (ProgLoc × Time). Thus the
generation of a new pid is defined as

newpid : Pid × ProgLoc × Time → Pid

newpid((`′, t′), `, t) := (`, tick∗(t, tick(`′, t′))

where tick∗ is just the simple extension of tick that prepends a whole sequence to
another. Note that the new pid contains the pid that created it as a sub-sequence:
it is indeed part of its history. The pid ι0 := (`0, ε) is the pid associated with the
starting process, where `0 is just the root of the program.

Remark 1. Note that the only sources of infinity for the state space are time,
mailboxes and the data component of value addresses. If these domains are finite
then the state space is finite.

Definition 4 (Concrete Semantics). We define a (non-deterministic) tran-
sition relation on states (→) ⊆ State × State. In Figures 2 and 3 we present
the rules for application, message passing and process creation; we omit rules
for letrec, case and returning pids since they follow the same shape. The tran-
sition s → s′ is defined by a case analysis of the shape of s. The initial state
associated with a program P is sP := 〈π0, µ0, σ0〉 where π0 = [ι0 7→ 〈P, [],∗, t0〉],
µ0 = [ι0 7→ ε] and σ0 = [∗ 7→ Stop].

The rules for the purely functional reductions are a simple lifting of the cor-
responding rules for the sequential CESK* machine: when the currently selected
process is evaluating a variable Vars its address is looked up in the environment
and the corresponding value is fetched from the store and returned. Apply: When
evaluating an application, control is given to each argument in turn—including
the function to be applied; FunEval and ArgEval are then applied, collecting the
values in the continuation. When the machine has evaluated all arguments, it
records the new values in the environment and store, and passes control to the
function-body. The rule Receive fires if mmatch returns a valid match from the
process’ mailbox and passes control to the expression in the matching clause
with the pattern-variables populated by the matching substitution θ. When the
machine applies rule Send it extracts the recipient’s pid from the continuation,
and calls enq to dispatch the message. Rule Spawn is enabled if the argument
evaluates to a nullary function; the machine then creates a new process with a
fresh pid running the body of the function.

One can easily add rules for run-time errors such as wrong arity in function
application, non-exhaustive patterns in cases, sending to a non-pid and spawning
a non-function.

12 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Concurrent abstract reductions

AbsReceive

if π̂(ι̂) 3 q̂ = 〈e, ρ̂, â, t̂ 〉
e = receive p1 → e1 . . . pn → en end

m̂match(p1 . . . pn, µ̂(ι̂), ρ̂, σ̂) 3 (i, θ̂, m̂)

θ̂ = [x1 7→ d̂1 . . . xk 7→ d̂k]

δ̂j ∈ r̂es(σ̂, d̂j)

b̂j := n̂ewva(ι̂, xj , δ̂j , q̂)

ρ̂′ := ρ̂[x1 7→ b̂1 . . . xk 7→ b̂k]
then π̂′ = π̂ t [̂ι 7→ {〈ei, ρ̂′, â, t̂ 〉}]

µ̂′ = µ̂[̂ι 7→ m̂]

σ̂′ = σ̂ t [̂b1 7→ {d̂1} . . . b̂k 7→ {d̂k}]

AbsSelf

if π̂(ι̂) 3 〈 self (), ρ̂, â, t̂ 〉
then π̂′ = π̂ t [̂ι 7→ {〈ι̂, ρ̂, â, t̂ 〉}]

AbsSend

if π̂(ι̂) 3 〈v, ρ̂, â, t̂ 〉 σ̂(â) 3 Arg2〈`, d̂, ι̂′, , ĉ〉
d̂ = (send,)

then π̂′ = π̂ t [̂ι 7→ {〈v, ρ̂, ĉ, t̂ 〉}]
µ̂′ = µ̂[̂ι′ 7→ ênq((v, ρ̂), µ̂(ι̂′))]

AbsSpawn

if π̂(ι̂) 3 〈fun() → e, ρ̂, â, t̂ 〉
σ̂(â) 3 Arg1〈`, d̂, ρ̂′, ĉ〉
d̂ = (spawn,)

ι̂′ := n̂ewpid(ι̂, `, t̂)
then

π̂′ = π̂t
[
ι̂ 7→ {〈ι̂′, ρ̂′, ĉ, t̂ 〉},
ι̂′ 7→ {〈e, ρ̂,∗, t̂0〉}

]
µ̂′ = µ̂ t [̂ι′ 7→ ε̂]

Fig. 4. Abstract Semantic Rules for Concurrency primitives. We write t for the join operation
of the appropriate domain.

5 Parametric Abstract Interpretation

We aim to abstract the concrete operational semantics of Section 4 isolating the
least set of domains that need to be made finite in order for the abstraction to be
decidable. In Remark 1 we identify Time, Mailbox and Data as responsible for
the unboundedness of the state space. Our abstract semantics is thus parametric
on the abstraction of these basic domains.

Definition 5 (Basic domains abstraction). A data abstraction is a triple

D = 〈D̂ata, αd, r̂es〉 where D̂ata is a flat (i.e. discretely ordered) domain of ab-

stract data values, αd : Data → D̂ata and r̂es : Ŝtore×V̂alue →P(D̂ata). A time

abstraction is a tuple T = 〈T̂ime, αt, t̂ick, t̂0〉 where T̂ime is a flat domain of

abstract contours, αt : Time → T̂ime, t̂0 ∈ T̂ime, and t̂ick : ProgLoc × T̂ime →
T̂ime. A mailbox abstraction is a tuple M = 〈M̂ailbox ,≤m,tm, αm, ênq, ε̂,

m̂match〉 where (M̂ailbox ,≤m,tm) is a join-semilattice with least element ε̂ ∈
M̂ailbox , αm : Mailbox → M̂ailbox , ênq : V̂alue × M̂ailbox → M̂ailbox are mono-

tone in mailboxes and m̂match: pat∗×M̂ailbox × Ênv × Ŝtore →P(N× (Var ⇀

V̂alue)× M̂ailbox). A basic domains abstraction is a triple I = 〈D, T ,M〉 con-
sisting of a data, a time and a mailbox abstraction.

An abstract interpretation of the basic domains determines an interpretation
of the other abstract domains as follows.

Ŝtate := P̂rocs × ̂Mailboxes × Ŝtore P̂rocs := P̂id →P(̂ProcState)

̂ProcState := (ProgLoc] P̂id)× Ênv × K̂Addr × T̂ime

Ŝtore := (V̂Addr →P(V̂alue))× (K̂Addr →P(K̂ont))

Automatic Verification of Erlang-Style Concurrency 13

̂Mailboxes := P̂id → M̂ailbox P̂id := (ProgLoc × T̂ime)] {ι̂0} ι̂0 := t̂0

Ênv := Var ⇀ V̂Addr V̂alue := Ĉlosure] P̂id Ĉlosure := ProgLoc × Ênv

each equipped with an abstraction function defined by an appropriate pointwise
extension. We will call all of them α since it will not introduce ambiguities. The

abstract domain K̂ont is the pointwise abstraction of Kont , and we will use the
same tags as those in the concrete domain. The abstract functions ̂newkpush,
̂newkpop, n̂ewva and n̂ewpid, are defined exactly as their concrete versions, but

on the abstract domains. When B is a flat domain, the abstraction of a partial
map C = A ⇀ B to Ĉ = Â → P(B̂) , where f̂ ≤Ĉ ĝ ⇔ ∀â. f̂(â) ⊆ g(â), is

defined as αC(f) := λâ ∈ Â. {αB(b) | (a, b) ∈ f and αA(a) = â}.
The operations on the parameter domains need to ‘behave’ with respect to the

abstraction functions: the standard correctness conditions listed below must be
satisfied by their instances. These conditions amount to requiring that what we
get from an application of a concrete auxiliary function is adequately represented
by the abstract result of the application of the abstract counterpart of that
auxiliary function. The partial orders on the domains are standard pointwise
extensions of partial orders of the parameter domains.

Definition 6 (Sound basic domains abstraction). A basic domains abstrac-
tion I is sound just if the conditions below are met by the auxiliary operations:

αt(tick(`, t)) ≤ t̂ick(`, αt(t)) (1)

σ̂ ≤ σ̂′ ∧ d̂ ≤ d̂′ =⇒ r̂es(σ̂, d̂) ≤ r̂es(σ̂′, d̂′) (2)

∀σ̂ ≥ α(σ). αd(res(σ, d)) ∈ r̂es(σ̂, α(d)) (3)

αm(enq(d,m)) ≤ ênq(α(d), αm(m)) αm(ε) = ε̂ (4)

if mmatch(p,m, ρ, σ) = (i, θ,m′) then ∀m̂ ≥ α(m), ∀σ̂ ≥ α(σ)

∃m̂′ ≥ α(m′) such that (i, α(θ), m̂′) ∈ m̂match(p, m̂, α(ρ), σ̂) (5)

Following the Abstract Interpretation framework, one can exploit the soundness
constraints to derive, by algebraic manipulation, the definitions of the abstract
auxiliary functions which would then be correct by construction [26].

Definition 7 (Abstract Semantics). Once the abstract domains are fixed,
the rules that define the abstract transition relation are straightforward abstrac-
tions of the original ones. In Figure 4, we present the abstract counterparts of
the concurrency rules for the operational semantics of Figure 3; the full list of
the abstract rules can be found in the extended paper [12]. defining the non-

deterministic abstract transition relation on abstract states () ⊆ Ŝtate× Ŝtate.
When referring to a particular program P, the abstract semantics is the portion
of the graph reachable from sP .

Theorem 1 (Soundness of Analysis). Given a sound abstraction of the basic

domains, if s → s′ and αcfa(s) ≤ u, then there exists u′ ∈ Ŝtate such that
αcfa(s′) ≤ u′ and u u′.

14 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Now that we have defined a sound abstract semantics we give sufficient con-
ditions for its computability.

Theorem 2 (Decidability of Analysis). If a given (sound) abstraction of the
basic domains is finite, then the derived abstract semantics is finite; it is also
decidable if the associated auxiliary operations (in Definition 6) are computable.

Abstracting Mailboxes For the analysis to be computable abstract mailboxes need
to be finite too. Abstracting addresses (and data) to a finite set, values, and thus
messages, become finite. We abstract a mailbox by an un-ordered set of messages
in the static analysis overcoming the potential unbounded length of mailboxes
but loosing information about the sequence and removal of messages. This ab-

straction is formalised in the domain Mset := 〈P(V̂alue),⊆,∪, αset, ênqset, ∅,
m̂matchset〉 where the abstract versions of enq and the matching function can
be derived from the correctness condition: αset(m) := {α(d) | ∃i. mi = d},
ênqset(d̂, m̂) := {d̂} ∪ m̂ and

m̂matchset(p1 . . . pn, m̂, ρ̂, σ̂) :=
{

(i, θ̂, m̂)
∣∣∣d̂ ∈ m̂, θ̂ ∈ m̂atchρ̂,σ̂(pi, d̂)

}
Abstracting Data. We included data in the value addresses in the definition of
VAddr in order to allow for sensitivity towards data in the analysis. However,
cutting contours is no longer sufficient to make VAddr finite. A simple solution
is to use the trivial data abstraction Data0 := { }, discarding the value, or if
more precision is required, any finite data-abstraction would do: the analysis will
then distinguish states that differ because of different bindings in their frame.

A data abstraction particularly well-suited to languages with algebraic data-
types is the abstraction that discards every sub-term of a constructor term that is
nested at a deeper level than a parameter D. We call DataD such an abstraction,
the formal definition of which can be found in [12].

Abstracting Time. k-CFA is a specific time abstraction which yields an analysis
that distinguishes dynamic contexts up to a given bound k; this is achieved by
truncating contours at length k to obtain their abstract counterparts obtain-
ing the abstract domain Timek :=

⋃
0≤i≤k ProgLoci, αkt (`0 . . . `k · t) := `0 . . . `k.

The simplest analysis we can then define is a 0-CFA with the basic domains

abstraction 〈Data0,Time0, M̂ailbox set〉. With this instantiation many of the do-
mains collapse into singletons. However, the analysis keeps a separate store and
mailboxes for each abstract state and leads to an exponential algorithm. To
improve the complexity we apply a widening along the lines of [36, Section 7]:
we replace the separate store and separate mailboxes for each state by a global
copy of each. This reduces significantly the state-space we need to explore: the
algorithm becomes polynomial in the size of the program.

Considering other abstractions for the basic domains easily leads to expo-
nential algorithms; in particular, the state-space grows linearly wrt the size of
abstract data so the complexity of the analysis using DataD is exponential in D.

Automatic Verification of Erlang-Style Concurrency 15

Open programs. Often it is useful to verify an open expression where its input is
taken from a regular set of terms [30]. For this purpose we introduce a new prim-
itive choice that non-deterministically calls one of its arguments. For instance,
an interesting way of closing N in Example 1 is to bind it to any num():

any num() = choice(fun() → zero, fun() → {succ, any num()}).

If the state running two or more instances of inc’s critical section is uncoverable,
then mutual exclusion is ensured for arbitrarily many instances of inc.

6 Generating the Actor Communicating System

The CFA algorithm allows us to derive a sound representation of the control-
flow of the program taking into account higher-order computation and some
information about synchronization. The abstract transition relation gives us a
rough scheme of the possible transitions that we can ‘guard’ with communication
and process creation actions. These guarded rules will form the definition of an
ACS that simulates the semantics of the input λActor program.

Terminology. We identify a common pattern of the rules of the abstract seman-
tics. In each rule R, the premise distinguishes an abstract pid ι̂ and an abstract
process state q̂ = 〈e, ρ̂, â, t̂ 〉 associated with ι̂ i.e. q̂ ∈ π̂(ι̂) and the conclusion of
the rule associates a new abstract process state—call it q̂′—with ι̂ i.e. q̂′ ∈ π̂′(ι̂).
Henceforth we shall refer to (ι̂, q̂, q̂′) as the active components of the rule R.

Definition 8 (Generated ACS). Given a λActor program P, a sound basic
domains abstraction I = 〈T ,M,D〉 and a sound data abstraction for messages

Dmsg = 〈M̂sg , αmsg, r̂esmsg〉 the Actor communicating system generated by P, I
and Dmsg is AP := 〈P̂id , ̂ProcState, M̂sg , R, α(ι0), α(π0(ι0))〉 where sP = 〈π0,
µ0, σ0, t0〉 is the initial state with π0 = [ι0 7→ 〈P, [],∗, t0〉] and the rules in R are
defined by induction over the following rules.

(AcsRec) If ŝ ŝ′ is proved by AbsReceive with active components (ι̂, q̂, q̂′)

where d̂ = (pi, ρ̂
′) is the abstract message matched by m̂match and m̂ ∈

r̂esmsg(σ̂, d̂), then ι̂ : q̂
?m̂−−→ q̂′ is in R.

(AcsSend) If ŝ ŝ′ is proved by AbsSend with active components (ι̂, q̂, q̂′) where

d̂ is the sent abstract value and m̂ ∈ r̂esmsg(σ̂, d̂), then ι̂ : q̂
ι̂′!m̂−−−→ q̂′ is in R.

(AcsSp) If ŝ ŝ′ is proved by AbsSpawn with active component (ι̂, q̂, q̂′) where
ι̂′ is the new abstract pid that is generated in the premise of the rule, which

gets associated with the process state q̂′′ = 〈e, ρ̂,∗〉 then ι̂ : q̂
νι̂′.q̂′′−−−−→ q̂′ is in R.

(AcsTau) If ŝ ŝ′ is proved by any other rule with active components (ι̂, q̂, q̂′),

then ι̂ : q̂
τ−→ q̂′ is in R.

As we will make precise later, keeping P̂id and ̂ProcState small is of para-
mount importance for the model checking of the generated ACS to be feasible.
This is the main reason why we keep the message abstraction independent from

16 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

cell startι̂0 :

res start sp inc

stop

τ
νι̂c.res free

νι̂i.inc0

τ res freeι̂c :

ack

res locked Res

cell?lock

ι̂i!ack

?req
?unlock

τ

ι̂i!ans

τ

inc0ι̂i : inc1 inc2 inc3 inc4 inc5 stop
ι̂c!lock ?ack ι̂c!req ?ans ι̂c!req ι̂c!unlock

Fig. 5. ACS generated by the algorithm from Example 1

the data abstraction: this allows us to increase precision with respect to types of
messages, which is computationally cheap, and keep the expensive precision on
data as low as possible. It is important to note that these two ‘dimensions’ are
in fact independent and a more precise message space enhances the precision of
the ACS even when using Data0 as the data abstraction.

In our examples (and in our implementation) we use a DataD abstraction for
messages where D is the maximum depth of the receive patterns of the program.

Definition 9. The function αacs : State → (P̂id × (̂ProcState] M̂sg)→ N) re-
lating concrete states and states of the ACS is defined as

αacs(〈π, µ, σ〉) :=

(ι̂, q̂) 7→

∣∣{ι | α(ι) = ι̂, α(π(ι)) = q̂}
∣∣

(ι̂, m̂) 7→

∣∣∣∣∣
{

(ι, i)

∣∣∣∣∣α(ι) = ι̂,

αmsg(res(σ, µ(ι)i)) = m̂

}∣∣∣∣∣
It is important to note that most of the decidable properties of the generated

ACS are not even expressible on the CFA graph alone: being able to predicate on
the contents of the counters means we can decide boundedness, mutual exclusion
and many other expressive properties.

Theorem 3 (Soundness of generated ACS). For all choices of I and Dmsg,
for all concrete states s and s′, if s → s′ and αacs(s) ≤ v then there exists v′

such that αacs(s
′) ≤ v′, and v→acs v′.

Let AP be the ACS derived from a given λActor program P. From Theorem 3
we have that JAPK simulates the semantics of P: for each run s→ s1 → s2 → . . .
of P, there exists a JAPK-run v→acs v1 →acs v2 →acs . . . such that αacs(s) = v
and for all i, αacs(si) ≤ vi. Simulation preserves all paths so reachability (and
coverability) is preserved.

Example 2. Figure 5 shows a pictorial representation of the ACS generated by
our procedure from the program in Example 1 (with the parametric entry point
of Section 5) using a 0-CFA analysis.The three pid-classes correspond to the
starting process ι̂0 and the two static calls of spawn in the program, the one for
the shared cell process ι̂c and the other, ι̂i, for all the processes running inc.

The entry point is (ι̂0, cell start). The second component represents the lock-
ing protocol quite faithfully. The VAS semantics is accurate enough to prove

Automatic Verification of Erlang-Style Concurrency 17

mutual exclusion of state ‘inc2’, which is protected by locks. This property can
be stated as a coverability problem for VAS: can inc2 = 2 be covered? We can
answer this question algorithmically: in this case the answer is negative and
soundness allows us to conclude that our input program satisfies the property.

Complexity of the Generation. Generating an ACS from a program amounts to
calculating the analysis of Section 5 and aggregating the relevant ACS rules for
each transition of the analysis. Since we are adding O(1) rules to R for each
transition, the complexity of the generation is the same as the complexity of the
analysis itself. The only reason for adding more than one rule to R for a single
transition is the cardinality of M̂sg but since this costs only a constant overhead,
increasing the precision with respect to message types is not as expensive as
adopting more precise data abstractions.

Dimension of the Abstract Model. The complexity of coverability on VAS is
Expspace in the dimension of the VAS; hence for the approach to be practical, it
is critical to keep the number of components of the VAS underlying the generated
ACS small; in what follows we call dimension of an ACS the dimension of the
VAS underlying its VAS semantics.

Our algorithm produces an ACS with dimension (| ̂ProcState|+|M̂sg |)×|P̂id |.
With the 0-CFA abstraction described at the end of Section 5, ̂ProcState is poly-

nomial in the size of the program and P̂id is linear in the size of the program so,
assuming |M̂sg | to be a constant, the dimension of the generated ACS is polyno-
mial in the size of the program, in the worst case. Due to the parametricity of the
abstract interpretation we can adjust for the right levels of precision and speed.
For example, if the property at hand is not sensitive to pids, one can choose a

coarser pid abstraction. It is also possible to greatly reduce ̂ProcState: we observe
that many of the control states result from intermediate functional reductions;
such reductions performed by different processes are independent, thanks to the
actor model paradigm. This allows for the use of preorder reductions. In our
prototype, as described in Section 7, we implemented a simple reduction that
collapses internal functional transitions, if irrelevant to the property at hand.
This has proven to be a simple yet effective transformation yielding a significant

speedup. We conjecture that, after the reduction, the cardinality of ̂ProcState is
quadratic only in the number of send, spawn and receive of the program.

7 Evaluation, Limitations and Extensions

To evaluate the feasibility of the approach, we have constructed Soter, a pro-
totype implementation of our method. Written in Haskell, Soter takes as input
a single Erlang module annotated with safety properties in the form of simple
assertions. Soter supports the full higher-order fragment and the (single-node)
concurrency and communication primitives of Erlang; for more details about the
tool see [11]. The annotated Erlang module is first compiled to Core Erlang by
the Erlang compiler. A 0-CFA-like analysis, with support for the DataD data

18 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Name LOC PRP ORD SAFE? ABS ACS SIZE TIME
D M Places Ratio Analysis Simpl BFC Total

reslock 356 1 2 yes 0 2 40 10% 0.56 0.08 0.82 1.48
sieve 230 3 2 yes 0 2 47 19% 0.26 0.03 2.46 2.76
concdb 321 1 1 yes 0 2 67 12% 1.10 0.16 5.19 6.46
state factory 295 2 2 yes 0 1 22 4% 0.59 0.13 0.02 0.75
pipe 173 1 2 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 1 2 yes 0 2 36 9% 0.55 0.07 0.25 0.88
parikh 101 1 1 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe send 49 1 1 no 0 1 10 38% 0.02 0.00 0.00 0.02
safe send 82 1 1 no* 0 1 33 36% 0.05 0.01 0.00 0.06
safe send 82 4 1 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 1 2 no* 0 2 35 10% 0.36 0.05 0.02 0.44
firewall 236 1 2 yes 1 3 74 10% 2.38 0.30 0.00 2.69
finite leader 555 1 2 no* 0 2 56 20% 0.35 0.03 0.01 0.40
finite leader 555 1 2 yes 1 3 97 23% 0.75 0.07 0.86 1.70
stutter 115 1 1 no* 0 0 15 19% 0.04 0.00 0.00 0.05
howait 187 1 2 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Table 1. Soter Benchmarks. LOC is the number of lines of compiled Core Erlang. PRP is the
number of properties to be proven. ORD is the order of the program. D and M are the data
and message abstraction depth. In the “Safe?” column, “no*” means that the verification was
inconclusive but the program is safe; “no” means that the program is not safe and Soter finds
a genuine counterexample. “Places” is the number of places of the underlying Petri net after
simplification; “Ratio” is the ratio between the number of places before and after simplification.
All times are in seconds.

and message abstraction, is then performed on the compile; subsequently an
ACS is generated. The ACS is simplified and then fed to the backend model-
checker along with coverability queries translated from the annotations in the
input Erlang program. Soter’s backend is the tool BFC [20] which features a fast
coverability engine for a variant of VAS. At the end of the verification pathway,
if the answer is YES then the program is safe with respect to the input property,
otherwise the analysis is inconclusive.

In Table 1 we summarise our experimental results. Many of the examples
are higher-order, use dynamic (and unbounded) process creation and non-trivial
synchronization. Example 1 appears as reslock and Soter proves mutual exclusion
of the clients’ critical section. concdb is the example program of [18] for which we
prove mutual exclusion. pipe is inspired by the ‘pipe’ example of [21]; the property
proved here is boundedness of mailboxes. sieve is a dynamically spawning higher-
order concurrent implementation of Erathostene’s sieve inspired by a program by
Rob Pike [32]; Soter can prove all the mailboxes are bounded. safe send, firewall
and finite leader could be successfully verified after refining the data abstraction.
All example programs, annotated with coverability queries, can be viewed and
verified using Soter at http://mjolnir.cs.ox.ac.uk/soter/.

There are programs and correctness properties that cannot be proved using
any of the presented abstractions. Programs whose correctness depends on the
order in which messages are delivered are abstracted too coarsely by the counter
abstraction on mailboxes; however this is an uncommon pattern. Properties that
assume the precise identification of processes are also not amenable to our ap-
proach because of the abstraction on pids. Finally, stack-based reasoning is out of
reach of the current abstractions. The examples stutter and howait were designed
specifically to illustrate Soter’s limitations, see [12] for details.

http://mjolnir.cs.ox.ac.uk/soter/

Automatic Verification of Erlang-Style Concurrency 19

Refinement and Extensions. The parametric definition of our abstract seman-
tics allows us to tune the precision of the analysis. For safety properties, the
counter-example witnessing a no-instance is a finite run of the abstract model.
We conjecture that, given a spurious counter-example, a suitable refinement of
the basic domains abstraction is computable which eliminates the spurious run
of the corresponding abstract semantics. The development of a fully-fledged CE-
GAR loop is a topic of ongoing research.

The general architecture of our approach, combining static analysis and ab-
stract model generation, can be adapted to accommodate different language
features and different abstract models. By appropriate decoration of the anal-
ysis, it is possible to derive even more complex models for which semi-decision
verification procedures have been developed [4,23].

8 Related Work and Conclusions

Verification or bug-finding tools for Erlang [24,29,22,7,8,6] typically rely on static
analysis. The information obtained, usually in the form of a call graph, is then
used to extract type constraints or infer runtime properties. Examples of static
analyses of Erlang programs in the literature include data-flow [6], control-
flow [29,22] and escape [7] analyses. Reppy and Xiao [34] and Colby [9] analyse
the communication patterns of CML, which is based on typed channels and syn-
chronous message passing, unlike Erlang’s Actor-based model. To our knowledge,
none of these analyses derives an infinite-state system.

Van Horn and Might [27] derive a CFA for a multithreaded extension of
Scheme, using the same methodology [36] that we follow. The concurrency model
therein is thread-based, and uses a compare-and-swap primitive. Our contribu-
tion, in addition to extending the methodology to Actor concurrency, is to use
the derived parametric abstract interpretation to bootstrap the construction of
an infinite-state abstract model for automated verification.

Venet [37] proposed an abstract interpretation framework for the sanalysis of
π-calculus, later extended to other process algebras by Feret [13] and applied to
CAP, a process calculus based on the Actor model, by Garoche [17]. In particular,
Feret’s non-standard semantics can be seen as an alternative to Van Horn and
Might’s methodology, but tailored for process calculi.

Huch [18] uses abstract interpretation and model checking to verify LTL-
definable properties of a restricted fragment of Erlang programs: (i) order-one
(ii) tail-recursive, (iii) mailboxes are bounded (iv) programs spawn a fixed, stat-
ically computable, number of processes. Given a data abstraction function, his
method transforms a program to an abstract, finite-state model. In contrast, our
method can verify Erlang programs of every finite order, with no restriction on
the size of mailboxes, or the number of processes that may be spawned. Since our
method of verification is by transformation to a decidable infinite-state system
that simulates the input program, it is capable of greater accuracy.

McErlang is a model checker for Erlang programs developed by Fredlund
and Svensson [15]. Given a program, a Büchi automaton, and an abstraction

20 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

function, McErlang explores on-the-fly a product of an abstract model of the
program and the Büchi automaton. When the abstracted model has infinitely
many reachable states, McErlang’s exploration will not terminate. McErlang
implements a fully-fledged Erlang runtime system, and it supports a substantial
part of the language, including distributed and fault-tolerant features.

Asynchronous Programs, i.e. first-order recursive procedures with finite data
which can make an unbounded number of asynchronous calls, can be encoded
precisely into VAS and thus verified using reachability [19,16]. This infinite-state
model supports call-stacks, through Parikh images, but not message-passing.

ACS can be expressed as processes in a suitable variant of CCS [28]. De-
cidable fragments of process calculi have been used in the literature to verify
concurrent systems. Meyer [25] isolated a rich fragment of the π-calculus called
depth-bounded. For certain patterns of communication, this fragment can be the
basis of an abstract model that avoids the “merging” of mailboxes of the pro-
cesses belonging to the same pid-class. Erlang programs however can express
processes which are not depth bounded. We plan to address the automatic ab-
straction of arbitrary Erlang programs as depth-bounded process elsewhere.

Dialyzer [22,7,8] is a popular bug finding tool, included in the standard Er-
lang / OTP distribution. Given an Erlang program, the tool uses flow and es-
cape [31] analyses to detect specific error patterns. Building on top of Dialyzer’s
static analysis, success types are derived. Lindahl and Sagonas’ success types [22]
‘never disallow the use of a function that will not result in a type clash during
runtime’ and thus never generate false positives. Dialyzer puts to good use the
type annotations that programmers do use in practice; it scales well and is effec-
tive in detecting ‘discrepancies’ in Erlang code. However, success typing cannot
be used to verify program correctness.

Conclusion. We have defined a generic analysis for λActor, and a way of ex-
tracting from the analysis a simulating infinite-state abstract model in the form
of an ACS, which can be automatically verified for coverability: if a state of
the abstract model is not coverable then the corresponding concrete states of
the input λActor program are not reachable. Our constructions are parametric
thus enabling different analyses to be easily instantiated. In particular, with a
0-CFA-like specialisation of the framework, the analysis and generation of the
ACS are computable in polynomial time. Further, the dimension of the resulting
ACS is polynomial in the length of the input program, small enough for the
verification problem to be tractable in many useful cases. The empirical results
using our prototype implementation Soter are encouraging. They demonstrate
that the abstraction framework can be used to prove interesting safety properties
of non-trivial programs automatically.

References

1. G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA, 1986.

2. J. Armstrong. Erlang. CACM, 53(9):68, 2010.

Automatic Verification of Erlang-Style Concurrency 21

3. J. Armstrong, R. Virding, and M. Williams. Concurrent programming in Erlang. Prentice
Hall, 1993.

4. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. In ACM SIGPLAN Notices, volume 38, pages
62–73, 2003.

5. R. Carlsson. An introduction to Core Erlang. In Proceedings of the PLI’01 Erlang Work-
shop, 2001.

6. R. Carlsson, K. Sagonas, and J. Wilhelmsson. Message analysis for concurrent programs
using message passing. ACM TOPLAS, 2006.

7. M. Christakis and K. Sagonas. Static detection of race conditions in erlang. PADL, pages
119–133, 2010.

8. M. Christakis and K. Sagonas. Detection of asynchronous message passing errors using
static analysis. PADL, pages 5–18, 2011.

9. C. Colby. Analyzing the communication topology of concurrent programs. In PEPM,
pages 202–213, 1995.

10. E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Verifying Erlang-style concurrency auto-
matically. Technical report, University of Oxford DCS Technical Report, 2011. Available
at http://mjolnir.cs.ox.ac.uk/soter/cpmrs.pdf.

11. E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Soter: an automatic safety verifier for
Erlang. AGERE!’12, pages 137–140. ACM, 2012.

12. E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Automatic verification of Erlang-style
concurrency. CoRR, abs/1303.2201, 2013. Available at http://arxiv.org/abs/1303.2201.

13. J. Feret. Abstract interpretation of mobile systems. Journal of Logic and Algebraic
Programming, 63(1):59130, 2005.

14. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001.

15. L. Fredlund and H. Svensson. McErlang: a model checker for a distributed functional
programming language. In ICFP, pages 125–136, 2007.

16. P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. TOPLAS,
34(1), 2012.

17. P. Garoche, M Pantel, and X. Thirioux. Static safety for an actor dedicated process
calculus by abstract interpretation. In FMOODS, pages 78–92, 2006.

18. F. Huch. Verification of Erlang programs using abstract interpretation and model checking.
In ICFP, pages 261–272, 1999.

19. R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. POPL’07,
pages 339–350, New York, NY, USA, 2007. ACM.

20. A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof minimization.
In CONCUR, 2012. www.cprover.org/bfc/.

21. N. Kobayashi, M. Nakade, and A. Yonezawa. Static analysis of communication for asyn-
chronous concurrent programming languages. Static Analysis, pages 225–242, 1995.

22. T. Lindahl and K. Sagonas. Practical type inference based on success typings. In PPDP,
pages 167–178, 2006.

23. Z. Long, G. Calin, R. Majumdar, and R. Meyer. Language-Theoretic abstraction refine-
ment. In FASE, pages 362–376, 2012.

24. S. Marlow and P. Wadler. A practical subtyping system for Erlang. In ICFP, pages
136–149, 1997.

25. R. Meyer. On boundedness in depth in the π-calculus. In Fifth Ifip International Confer-
ence On Theoretical Computer Science, pages 477–489, 2008.

26. J. Midtgaard and T. Jensen. A calculational approach to control-flow analysis by abstract
interpretation. Static Analysis, pages 347–362, 2008.

27. M. Might and D. Van Horn. A family of abstract interpretations for static analysis of
concurrent higher-order programs. Static Analysis, pages 180–197, 2011.

28. R. Milner. A calculus of communicating systems, volume 92. Springer-Verlag Germany,
1980.

29. S. Nyström. A soft-typing system for Erlang. In ACM Sigplan Erlang Workshop, pages
56–71, 2003.

30. C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional programs with pattern-
matching algebraic data types. In POPL, pages 587–598, 2011.

31. Y. G. Park and B. Goldberg. Escape analysis on lists. In ACM SIGPLAN Notices,
volume 27, pages 116–127, 1992.

32. R. Pike. Concurrency and message passing in Newsqueak. Google Talks Archive. Available
at http://youtu.be/hB05UFqOtFA.

33. C. Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6:223–231, 1978.

34. J. H. Reppy and Y. Xiao. Specialization of CML message-passing primitives. In POPL,
pages 315–326, 2007.

35. O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, 1991.

36. D. Van Horn and M. Might. Abstracting abstract machines. In ICFP, pages 51–62, 2010.
37. Arnaud Venet. Abstract interpretation of the pi-calculus. In LOMAPS, pages 51–75, 1996.

http://mjolnir.cs.ox.ac.uk/soter/cpmrs.pdf
http://arxiv.org/abs/1303.2201
www.cprover.org/bfc/
http://youtu.be/hB05UFqOtFA

	Automatic Verification of Erlang-Style Concurrency

