
8

y

0

9

6

5

x2 3

I 1

H 4L 7

Information flow Analysis for JavaScript
via a dynamically typed language with staged metaprogramming

Martin Lester Luke Ong Max Schäfer
http://mjolnir.cs.ox.ac.uk/web/slamjs/

Web 2.0 applications written in JavaScript handle sensitive information.
Information flow analysis is an important security problem.

What we have done...
• first analysis of its kind
• an implementation in OCaml
• a soundness proof in Coq

Still to do...
• automate transformation to staged metaprogramming
• improve precision of analysis of strings, numbers...
• support full JavaScript: mutable state, exceptions...

Use different markers for
different security levels.

Extension to handle staged metaprogramming:
• abstract value BOX(x) models a code value x...
• ...or anything x evaluates to –
 this keeps the needed abstract values finite

CFA: standard analysis that
determines which abstract
values occur at program points.

JavaScript is hard!

• eval lets programs run strings as code
So use staged metaprogramming instead:
• limit manipulation to splicing
 well-formed code templates
• still have to handle static and dynamic scoping and loss of alpha equivalence

evaluates like

with staged metaprogramming

Information flow...
...can be direct ...can be indirect

h directly affects the result h indirectly affects the result

We want to determine statically which subexpressions can affect the result.

1x@9 10

9

3

c@8

c@2 6

8

5

x@7

x@2

L 7

2

0

H 4

Our Analysis

1. Mark expressions of interest 2. CFA 3. Generate information flow constraints
direct flow indirect flow

direct flow from H
indirect flow from I
no flow from L

direct flow from H
no flow from L

