Information flow Analysis for JavaScript

OXFORD via a dynamically typed language with staged metaprogramming
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Web 2.0 applications written in JavaScript handle sensitive information.
Information flow analysis is an important security problem.

Information flow...

...can be direct ...can be indirect
if(z){h} else{false} — h or false if(h){true} else{false} — true (= h) or false (= h)
h directly affects the result h indirectly affects the result

We want to determine statically which subexpressions can affect the result.

JavaScript is hard! (fun(z){x + 1})

evaluates like

* eval lets programs run strings as code
p g g eval("(fun(X) {II_I_HX + 1||_|_||})||)

S0 use staged metaprogramming instead: o |
» limit manipulation to splicing with staged metaprogramming
well-formed code templates U (box (fun(z)unbox (box (z + 1)) }))

» still have to handle static and dynamic scoping and loss of alpha equivalence

Our Analysis
1. Mark expressions of interest— 2. CFA ——3. Generate information flow constraints
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CFA: standard analysis that Extension to handle staged metaprogramming:
determines which abstract » abstract value BOX(x) models a code value x...
values occur at : e ...0r anything x evaluates to —
this keeps the needed abstract values finite
What we have done... Still to do...
* first analysis of its kina « automate transformation to staged metaprogramming
 an implementation in OCaml  Improve precision of analysis of strings, numbers...

 a soundness proof in Cog » support full JavaScript: mutable state, exceptions...



