Information flow Analysis for JavaScript

OXFORD via a dynamically typed language with staged metaprogramming

DEPARTMENT OF

http://mjolnir.cs.ox.ac.uk/web/slamjs/
COMPUTER
SCIENCE Martin Lester Luke Ong Max Schafer

Web 2.0 applications written in JavaScript handle sensitive information.
Information flow analysis is an important security problem.

Information flow...

...can be direct ...can be indirect
if(z){h} else{false} — h or false if(h){true} else{false} — true (= h) or false (= h)
h directly affects the result h indirectly affects the result

We want to determine statically which subexpressions can affect the result.

JavaScript is hard! (fun(z){x + 1})

evaluates like

* eval lets programs run strings as code
p g g eval("(fun(X) {II_I_HX + 1||_|_||})||)

S0 use staged metaprogramming instead: o |
» limit manipulation to splicing with staged metaprogramming
well-formed code templates U (box (fun(z)unbox (box (z + 1)) }))

» still have to handle static and dynamic scoping and loss of alpha equivalence

Our Analysis
1. Mark expressions of interest— 2. CFA ——3. Generate information flow constraints

— direct flow - » indirect flow
NUM FUN(y,z")

((fun(z)q — (((fun(r)q

: NUM
: (fun(y){z}) (1: (fun(y){ }))
P 1))(n - 2) Pl :2)7)
o it o O
Use different for FUN(X ((fun(){.CIJ }>)
different security levels. NUM ?r:;?fgcfﬁr;x?rrgm
let r=1:1in —— (let z = (1.:1")"in L. moffowirom
, — BOX(z4)
let ¢ = boxxin (let ¢ = (boxx")" in
let z = 11:2in NUMi(let = (11: 2%)in —
run c (run ¢){))7)
—* 2 direct flow f
BOX (42) NUM NUM o0 flow from |
CFA: standard analysis that Extension to handle staged metaprogramming:
determines which abstract » abstract value BOX(x) models a code value x...
values occur at : e ...0r anything x evaluates to —
this keeps the needed abstract values finite
What we have done... Still to do...
* first analysis of its kina « automate transformation to staged metaprogramming
 an implementation in OCaml Improve precision of analysis of strings, numbers...

 a soundness proof in Cog » support full JavaScript: mutable state, exceptions...

